我们在上一篇文章中给大家简单提到了数据分析需要的能力,并且简单介绍了数据分析的步骤。数据分析的步骤有四点,分别为数据获取、数据处理、数据分析、数据呈现。下面我们就在这一篇文章中给大家介绍数 ...
2019-02-15
在上面的内容中我们给大家介绍了数据分析步骤的详细内容,但是大家在进行数据分析工作的时候除了需要掌握数据分析的步骤还是需要做到数据分析工具的使用的,那么数据分析的工具都需要掌握哪些呢?我们在 ...
2019-02-15
数据分析工具有数据透视表,数据透视表的作用是把大量数据生成可交互的报表,数据透视表具有这样一些重要功能:分类汇总、取平均、最大最小值、自动排序、自动筛选、自动分组;可分析占比、同比、环 ...
2019-02-15
很多人看到了数据分析行业的火爆发展之后,都想进入数据分析这个行业,但是数据分析这个高大上的职业是有很高的要求的,我们做数据分析需要学习很多的知识,同时还需要培养一些能力,只有做到了这些,我 ...
2019-02-15
现阶段,人工智能的发展突飞猛进,在生活的各方各面中给大家带来了极大的方便。但是大家可能都听说过人工智能会威胁人类的想法,那么我们如何看待这种观点呢?下面我们就给大家介绍一下这个问题,希望这 ...
2019-02-14
我们在上一篇文章中给大家介绍了很多关于机器学习需要注意的事情,这些事情都是前辈们踩过的陷阱,所以这些内容对于我们来说可谓是弥足珍贵的经验。我们在前面的文章中也给大家介绍了很多关于机器学习的 ...
2019-02-14
在上一篇文章中我们给大家介绍了机器学习需要注意的相关事项,这些内容都是我们在学习机器学习时必须注意的内容,今天我们会继续为大家介绍更多有关机器学习需要注意的内容,希望这篇文章能够更好地帮助 ...
2019-02-14
现如今,科技在不断进步,给我们的生活带来了极大的便利。如果要问现在什么科技最能够代表现阶段,大家肯定认为是互联网。不过现在互联网可以说是过去时了,因为人工智能能够给我们带来很多的方便,这也 ...
2019-02-14
现在的机器学习是一个十分流行的事物,这还得归功于人工智能的功劳。现如今,越来越多的人们开始关注人工智能,因而开始关注机器学习。我们在前面的文章中给大家介绍了很多机器学习需要明白的事情,在这 ...
2019-02-14
关于机器学习需要注意的内容有很多,我们也在前面的文章中给大家介绍出了两点,讲述了机器学习是由表示、评价、优化组成以及泛化及其作用是十分重要的,在这篇文章中我们会继续为大家介绍更多有关机器学 ...
2019-02-14
大家都知道,机器学习在人工智能中是一个非常重要的内容,我们在进行学习人工智能之前要对机器学习有一定的了解,而机器学习中最重要的就是那些算法了,只有我们掌握了那些算法我们才能够更好地掌握和熟 ...
2019-02-14
在人工智能中,人工神经网络是一个十分重要的内容,而人工神经网络就是模拟了人类的大脑。由此可见,要想学习人工智能就不得不说一说人工神经网络的知识,那么人工神经网络的知识都有哪些呢?下面我们就 ...
2019-02-14
在上一篇文章中我们给大家介绍了机器学习以及深度学习的内容,其实这两门技术都是为人工智能服务的,现在人工智能是一个十分火爆的名词,很多人都在关注人工智能,那么什么是人工智能呢?人工智能的知识 ...
2019-02-14
在上面的文章中我们给大家介绍了数据分析行业中数据分析和数据挖掘的基本概念知识,这些知识也只能帮助我们初步了解这些内容,我们在这篇文章中给大家介绍机器学习和深度学习的知识,帮助大家一步步深入 ...
2019-02-14
在数据分析行业中,衍生了很多的技术,比如数据挖掘、数据分析、人工智能、深度学习、人工神经网络、机器学习。很多人对于这些技术都不是十分的清楚,在接下来的几篇文章中我会给大家好好介绍一下这些知 ...
2019-02-14
CDA数据分析研究院原创作品,转载需授权 小编总是被那些玩转数据、利用数据做出超炫酷图表的大佬深深折服,膝盖都不够给他们。进行数据可视化做出超炫图表的软件有很多,今天小编也用数据分析常用的py ...
2019-02-14
在统计学和数据挖掘中,有很多东西都是容易混淆的,比如他们的目的都是一样的,但是统计学主要关注的是定量数据,而数据挖掘中需要处理其他形式的数据,这些也是数据挖掘与统计学中需要注意的事情。统计 ...
2019-02-13
在上面的文章中我们在数据挖掘的性质方面给大家介绍了数据挖掘和统计学的知识。在统计学中,统计学很少去关注实时分析,而数据挖掘中需要注意这些事情,这也是数据挖掘与统计学的区别之一,现在我们继续 ...
2019-02-13
不管是在数据挖掘工作中还是统计工作中,这两个工作的目的都是发现数据的结构,我们在前面的文章中使用统计学的性质进行描述统计学和数据挖掘的区别,下面我们就从数据挖掘的性质来讲述数据挖掘和统计学 ...
2019-02-13
前几篇文章中我们都是从统计学的角度给大家讲解数据挖掘和统计学的区别所在,但是对于统计学来说,数据挖掘中的核心就是准则,数据挖掘意味着数据集的规模,它常常标示着传统的准则不可用,我们在这篇文 ...
2019-02-13在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03