京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在上一篇文章中给大家简单提到了数据分析需要的能力,并且简单介绍了数据分析的步骤。数据分析的步骤有四点,分别为数据获取、数据处理、数据分析、数据呈现。下面我们就在这一篇文章中给大家介绍数据分析的的步骤的具体内容。
首先我们来说说数据获取,从字面的意思上讲,就是获取数据。数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。
然后我们说说数据处理,数据的处理需要掌握有效率的工具,这些工具有很多,比如Excel、SQL等等,Excel及高端技能:基本操作、函数公式、数据透视表、VBA程序开发。按照数据分析习惯的方法,先过一遍基础,知道什么是什么,然后找几个习题练习。或者去看看excelhome论坛,平常多思考如何用excel来解决问题,善用插件,还有记得保存。这样才能够做好数据分析这项工作。当然我们也需要专业的报表工具日常做报表设计一个模板可通用,只要会写SQL就可上手。相比excel做报表,开发的技术要求较少,能很快地开发常规报表、动态报表。而数据库的使用:熟练掌握SQL语言,SQL语言也是十分重要的,常见的有Oracle、SQL sever、My SQL等。学习流行的hadoop之类的分布式数据库来提升个人能力,对求职有帮助。
接着我们来说说分析数据,分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。因此,熟练掌握一些统计分析工具不可免。我们可学习SPSS,而SPSS不用编程,简单易学。十分适合新手,同时经典挖掘软件,需要编程。而R语言开源软件,新流行,对非结构化数据处理效率上更高,需编程。
最后给大家说一下数据可视化,就目前而言,很多数据分析工具已经涵盖了数据可视化部分,只需要把数据结果进行有效的呈现和演讲汇报就可以了。
以上的内容就是小编为大家介绍的数据分析步骤的具体内容,想必大家看了这篇文章以后已经知道了里面需要学习什么东西了吧?大家在进行学习数据分析工作的时候一定要认真细心,不放过每一个知识点,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12