
很多人看到了数据分析行业的火爆发展之后,都想进入数据分析这个行业,但是数据分析这个高大上的职业是有很高的要求的,我们做数据分析需要学习很多的知识,同时还需要培养一些能力,只有做到了这些,我们才能够做好数据分析这个工作。那么我们怎样才能学好数据分析呢?我们在这篇文章中给大家详细的介绍一下。
要想学好数据分析,要想胜任这份工作,那么就需要建立数据分析思维、结构化思维、公式化思维。我们在学习知识的时候往往在知识的海洋里被水淹没,不知所措。只要我们在学习数据分析知识的时候注重业务理解能力的培养,能够理解业务背后的商业逻辑。只有理解问题,才能转换成数据分析的问题,才知道如何设定分析目标进行分析。我们首先需要学习基础的理论知识,比如数理统计、模型原理、市场研究等。当然我们还需要学习常规分析工具的使用,比如Excel、PPT、思维导图、数据库、统计分析工具、数据挖掘等等。最重要的就是我们还要有数据报告和数据可视化的能力。试想一下,如果不能以简洁易懂的方式表达数据,那么数据分析再好,也是没有什么意义的。
首先我们在做数据分析的时候,一定要先明确业务场景,然后确定分析目标,接着构建分析体系,最后就是梳理核心指标。但是由于业务场景的业务不同,所以分析体系也不同。然后结合业务问题确定分析的目标,列出核心指标,整理所需要的数据。只有明确的数据分析的目的,我们才能够做好数据分析。
那么数据分析的几个步骤都是有哪些呢?我们可以吧数据分析分为四个步骤,这四个步骤分别是数据获取、数据处理、数据分析、数据呈现,这四个步骤每一个环节都是十分重要的,并且每一个步骤都是有很多的知识的,我们会在下一篇文章中给大家详细的介绍这些步骤的具体内容。
我们在这一篇文章中给大家介绍了数据分析的简单学习规划,需要具有数据分析思维、业务商业逻辑,同时还需要学好业务的商业逻辑,以及数据分析的工具使用,只有这样我们才能够学好数据分析知识,我们在下一篇文章中为大家呈现更多的知识,还请大家关注我们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10