京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前几篇文章中我们都是从统计学的角度给大家讲解数据挖掘和统计学的区别所在,但是对于统计学来说,数据挖掘中的核心就是准则,数据挖掘意味着数据集的规模,它常常标示着传统的准则不可用,我们在这篇文章中给大家详细地介绍一下这些内容。
相对于统计学而言,数据挖掘中准则起着更为核心的作用,数据挖掘所继承的学科如计算机科学及相关学科也是如此。数据集的规模常常意味着传统的统计学准则不适合数据挖掘问题,不得不重新设计。部分地,当数据点被逐一应用以更新估计量,适应性和连续性的准则常常是必须的。尽管一些统计学的准则已经得到发展,但更多的应用是机器学习。
在很多情况下,数据挖掘的本质是很偶然的发现非预期但很有价值的信息。这说明数据挖掘过程本质上是实验性的。这和确定性的分析是不同的。实际上,一个人是不能完全确定一个理论的,只能提供证据和不确定的证据。确定性分析着眼于最适合的模型建立一个推荐模型,这个模型也许不能很好的解释观测到的数据。很多,或许是大部分统计分析提出的是确定性的分析。然而,实验性的数据分析对于统计学并不是一个新生事务,或许这是统计学家应该考虑作为统计学的另一个基础,而这已经是数据挖掘的基础。所有这些都是正确的,但事实上,数据挖掘所遇到的数据集按统计标准来看都是巨大的。在这种情况下,如果使用统计工具可能会得出一个不准确的结果,这是因为百万个偶然因素可能就会使其失效。
而且,如果数据挖掘的主要目的是发现,那数据挖掘就不关心统计学领域中的在回答一个特定的问题之前,如何很好的搜集数据,例如实验设计和调查设计。数据挖掘本质上假想数据已经被搜集好,关注的只是如何发现其中的秘密。这些秘密往往就是数据分析工作中要找到的规律。
在这篇文章中我们给大家介绍了数据挖掘和统计学中的不同点,数据挖掘中的准则起着核心的作用,而统计学不是这样的。当然,数据挖掘的本质就是发现非预期但很有价值的信息,懂得了这些才能够发现数据挖掘工作的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31