京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家都知道,机器学习在人工智能中是一个非常重要的内容,我们在进行学习人工智能之前要对机器学习有一定的了解,而机器学习中最重要的就是那些算法了,只有我们掌握了那些算法我们才能够更好地掌握和熟料机器学习的内容。对于机器学习我们需要清楚很多事情,我们在这篇文章中给大家总结了12点内容,希望这12点内容能够帮助大家解决更多的问题。
首先我们给大家说一下机器学习中第一个内容,那就是我们要知道机器学习就是由表示、评价、优化组成。其中表示就是一个分类器必须用计算机能够处理的一些正式语言来表示。相反,为学习者选择一种表示方式就等同于选择一组可以学习的分类器。这个集合被称为学习者的假设空间。如果一个分类器不在假设空间中,它就不能被学习。而评价就是要区分好的分类器和坏的分类器,需要一个评价函数。算法内部使用的评估函数与分类器外部使用的评价函数可能不同,其主要是为了便于优化。最后,我们需要在语言的分类器中找到得分最高的一种方法。这就用到了优化,优化技术的选择是提高学习者效率的关键,同时也有助于确定分类器的评价函数是否具有多个最优值。初学者开始的时候使用现成的优化器是很常见的,不过这些优化器会被专门设计的优化器取代。
其次我们需要知道泛化的作用是十分重要的。机器学习的基本目标是泛化训练集中的例子。这是因为,无论我们有多少数据,我们都不太可能在测试时再次遇到一模一样的例子。在训练集上做得很好很容易,机器学习初学者最常见的错误是,对训练数据进行测试之后以为自己成功了。之后把选择的分类器放在新数据上测试,发现还没有随机猜测的准确。所以,如果构建一个分类器,一定要保留一些数据用来测试分类器。相反,如果构建一个分类器,那么在开始的时候将一些数据放在一边,最后用它来测试分类器,也就是最后在全部数据的基础上学习最终分类器。
在这篇文章中我们给大家介绍了关于机器学习需要注意的事项,机器学习由表示、评价、优化组成以及泛化的作用是十分重要的。由于篇幅原因我们就给大家介绍到这里了,在后面的文章中我们会继续为大家介绍出更多的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31