
现如今,科技在不断进步,给我们的生活带来了极大的便利。如果要问现在什么科技最能够代表现阶段,大家肯定认为是互联网。不过现在互联网可以说是过去时了,因为人工智能能够给我们带来很多的方便,这也是现在很多科学家热衷于研究人工智能的原因。说到人工智能就不得不说一说机器学习了,关于机器学习要注意很多的内容,下面我们就给大家介绍一下关于机器学习的内容。
我们需要注意的内容就是高维度中直觉不再好用,说完过拟合的问题,接下来要谈的是机器学习中的最大的问题,那就是维度的原因。具体就是指许多在低维度上工作正常的算法在输入是高维度的时候变得难用。但在机器学习中,这里包含的更多。随着示例的维度数,也就是特征数量的增长,泛化变得更加困难,因为固定大小的训练集覆盖了输入空间的一小部分。但是我们还是需要意识到的就是我们的直觉是来自于三维世界,通常并不适用于高维的情况。在高维的情况下,一个多变量高斯分布的质量并不在平均值附近,而是在一个越来越远的壳周围。如果一个常数的例子在高维超级立方体里均匀地分布,在多维度的情况下,大多数例子更接近于超立方体的一个面而不是它们最近的邻居。如果我们用一个超立方体来近似一个超球体,在高维度中几乎所有的超立方体的体积都在超球面之外。这对机器学习来说是个坏消息,其中一种类型的形状通常被另一种类型的形状所近似。这也是限制机器学习发展的一个原因。
在上面的内容中我们不难发现机器学习在高维度中不是很好用,这是因为在二维或三维空间中构建一个分类器很容易。通过视觉检查我们可以找到一个不同类别的例子之间的合理的界限。但在高维度中,很难理解发生了什么。这就使得设计一个好的分类器变得困难。有些人们可能会认为收集更多的特性并没有坏处,他们认为即使是最坏的情况,他们没有提供关于这个类的新信息而已。其实这些优点都被缺陷抵消了而已,并不是没有体现出来。
在这篇文章中我们给大家介绍了有关机器学习的内容,我们在学习机器学习的时候需要注意好在高维度中直觉不再好用,还需要从其他的方面进行考虑,这样我们才能更好地掌握机器学习的要点和重点,不让自己犯低层次的错误。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15