近几年,人工智能的概念被人们越来越多的提及。事实上,这个概念早在1956年就已经提出。需要指出,人工智能只是计算机科学的一个分支,它属于计算机科学范畴。人工智能的目的,就是制造出一种能够与人类 ...
2019-01-17
做好数据分析工作需要做好数据分析知识的储备。一般来说,想要快速上手数据分析工作,还需要对数据分析的细节进行了解,那么大家知道不知道数据分析需要注意的细节都是什么呢?下面就由小编为大家解答一 ...
2019-01-17
我们在上一篇文章中给大家介绍了数据分析的相关知识,主要介绍了保证数据分析全面性的分析方法,以及如何利用维度分析数据,这些知识需要拓展的知识有很多,使用到了经典的金字塔模型,我们在这一篇文章 ...
2019-01-17
我们在上一篇文章中给大家介绍了部分数据分析的知识,主要是数据分析建立指标,这样才能够做好数据分析工具。一般来说,在发展阶段,北极星指标是用户数和活跃率,用户数代表市场的体量和占有,活跃率代 ...
2019-01-17
在前面我们为大家提到的数据分析中的量化、业务以及核心,知道了这些我们才能够做到初步的了解数据分析,但是仅仅知道这些是不够的,不能真正地了解数据分析的知识。我们在这一篇文章中继续给大家介绍更 ...
2019-01-17
就目前而言,很多工作岗位都是需要数据分析这份工作,但是毕竟很多人不是“科班出身”,所以需要学习。数据分析这个事物是比较重要的,很多企业都是需要分析数据才能够推进业务的发展,那么大家知道不知 ...
2019-01-17
在上一篇文章中我们给大家介绍了两个数据挖掘失败的原因,具体是缺乏对常理的感觉以及缺乏迭代的能力,这两个原因是阻碍我们进行数据挖掘工作的石头。当然,关于数据挖掘失败的原因还有一个,那就是推广 ...
2019-01-17
在上一篇文章中我们给大家介绍了数据挖掘失败原因的其中一种,同时也是最常见的一种,那就是数据获取太难了。在这篇文章中我们接着给大家介绍数据挖掘失败的其他原因,那就是缺乏对常理的感觉以及缺乏迭代的能 ...
2019-01-17
在上一篇文章中我们给大家介绍了数据挖掘失败的两个原因,具体就是假数据真分析以及数据缺失十分严重,这些原因都能够导致我们的数据挖掘工作的失败,那么数据挖掘失败的原因还有哪些呢?下面我们就给大 ...
2019-01-17
在数据分析或者大数据的应用中,数据挖掘工作都是十分重要的。其实数据挖掘工作不会总是成功,也有很多失败的案例,那么关于数据挖掘失败的原因大家都清楚吗?下面我们就在这篇文章中给大家介绍一下数据 ...
2019-01-17
双十二一过,元旦也悄然飘去,不能抓住2018年末的尾巴了,2019的大门随即打开,我相信这个时候财务工作的小姐姐或者“表哥表姐”就开始为年度汇报工作发愁了:汇报量大,数据多,数据文件更是一个又一个 ...
2019-01-17
聚类分析在数据挖掘工作中是十分重要的技能,如果掌握了聚类分析会使得我们在数据挖掘工作中轻松应对各种问题,在这篇文章中我们继续给大家介绍数据挖掘中聚类分析的知识,希望能够给大家带来帮助。 ...
2019-01-16
在上一篇文章中我们给大家介绍了聚类分析的知识以及聚类分析中的部分算法。当然,这些算法都是需要我们掌握的,在这篇文章中我们继续给大家讲解数据挖掘中聚类分析的算法,希望能够给大家带来帮助。 ...
2019-01-16
不管是大数据还是数据挖掘,都离不开聚类分析,而聚类分析是数据挖掘中最经典的一种算法之一,也是数据挖掘工作的基础,同样也是数据挖掘的关键技术。那么什么是聚类分析呢?聚类分析能够为我们带来什么 ...
2019-01-16
数据挖掘师是一个十分重要的岗位,这个岗位专门为数据分析以及大数据服务。很多人都想进入数据分析这个行业,但有不少人虽然通过努力学习数据挖掘知识进入到了数据分析行业,但还是对数据挖掘工作有很多 ...
2019-01-16
我们在上一篇文章中给大家讲述了数据挖掘的四条原则,遵守了这四条原则可以帮助我们更好地应对数据挖掘的工作,但是数据挖掘还是需要模型的,我们对数据挖掘模型的选择也会影响我们的工作。那么怎么选对 ...
2019-01-16
在前面的文章中我们给大家介绍了三种提高数据挖掘能力的方法,这三种方法分别是打造全流程挖掘引擎、降低变量准备时间、通过运营保有挖掘资产。这三种方法都是能够帮助我们提高数据挖掘能力的,下面我 ...
2019-01-16
我们在上一篇文章中给大家讲述了一部分提高数据挖掘能力的办法。当然,这也只是从一个方面进行讲述的,还需要从多个角度才能够全面提高数据挖掘能力,下面我们就给大家讲述一下数据挖掘能力提高的其他方 ...
2019-01-16
在数据分析行业中,数据挖掘是一种发现规律的手段。在传统行业中,数据挖掘是一个过程十分冗长的东西,在数据获取中数据挖掘就成了企业中的一项重要工作。很多数据挖掘师在进行数据挖掘工作的时候往往会 ...
2019-01-16
在上几篇文章中我们给大家介绍了成为数据挖掘师需要学习的一部分数学基础。当然,如果能够掌握数学基础知识,那么在数据挖掘工作中一定会轻松不少,这也正是数据挖掘工作需要掌握的基础层级的知识。关于 ...
2019-01-16在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03