京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近几年,人工智能的概念被人们越来越多的提及。事实上,这个概念早在1956年就已经提出。需要指出,人工智能只是计算机科学的一个分支,它属于计算机科学范畴。人工智能的目的,就是制造出一种能够与人类智能相仿的具有独立处理事件或者思考能力的智能机器。
随着技术的不断进步和完善,人工智能领域的研究也在不断扩张,目前来说,其主要的研究对象包括语言和图像识别、自然语言的处理以及机器人等方面。人工智能自提出之日起到现在,因为技术的不断发展,人工智能的发展也取得了长足的进步,其应用领域正在逐步扩张,相信在不久的将来,人工智能将会成为人类社会中非常重要的组成部分。那么人工智能的本质是什么呢?
自计算机程序AlphaGo战胜人类围棋高手后,人工智能一词再次火热起来,越来越多的人开始关注人工智能,并对其产生浓厚的兴趣,而苹果公司的Siri,也苹果手机的用户体验到了人工智能为生活带来的方便。
关于人工智能的定义,到现在已经出现了许多,人们生活中随处可听到“智能”这个词,简而言之,所谓人工智能,就是指人创造出来的智能,这种智能能够像人一样处理生活中的事物,比如与人对话,对紧急情况作出处理和判断等,它们的“大脑”运算能力比人脑强很多,也因此对一些事物的处理会比人更为的迅速,而这一切都得益于计算机速度的飞速提高。
以AlphaGo为例,从技术上讲,它之所以能够击败人类的围棋高手,是因为它具有由“小”变“大”的能力,人类将十几万的围棋博弈输入到它的“大脑”中,然后它就会进行自我“对战”,进而产生几百万甚至几千万的围棋博弈或者叫做棋谱,所以它在应付人类的围棋博弈时,就能够“从容不迫”。而将这十几万的围棋棋谱衍变成几千万的棋谱,对于AlphaGo来说可能只是短短几分钟的时间,并且还不会忘记,这就是计算机速度提高所带来的人类所部具备的优势。
目前来说,全球各个国家和地区都在对人工智能进行深入的研究,人工智能给人类社会带来的便利和福利,已经让人类尝到了甜头,而人类使用工具的本质就是“偷懒”,相信在未来,更多的人工智能会出现在我们的生活中,而以前我们所不敢想象的社会,也许在不久的将来,就会因为人工智能的飞速发展得以实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11