
做好数据分析工作需要做好数据分析知识的储备。一般来说,想要快速上手数据分析工作,还需要对数据分析的细节进行了解,那么大家知道不知道数据分析需要注意的细节都是什么呢?下面就由小编为大家解答一下这个问题。
其实数据分析中的细节非常多,我们在进行数据分析工作的时候还是需要注意控制变量、样本、定义、比率、因果相关、辛普森悖论。下面我们就给大家说一下这些需要注意的地方。
首先是注意控制变量,在做 A/B 测试时没有控制好变量,导致测试结果不能反映实验结果。或者在进行数据对比时,两个指标没有可比性。其次就是样本。在做抽样分析时,选取的样本不够随机或不够有代表性。然后就是定义。在看某些报告或者公开数据时,经常会有人鱼目混珠,是指的访问用户数还是访问页面数?接着说说比率。比率型或比例型的指标出现的谬误以至于可以单独拎出来将。一个是每次谈论此类型指标时,都需要明确分子和分母是什么。另一方面,在讨论变化的百分比时,需要注意到基数是多少。接着说说因果相关,很多人会误把相关当因果,忽略中介变量。最后说说辛普森悖论。简单来说,就是在两个相差较多的分组数据相加时,在分组比较中都占优势的一方,会在总评中反而是失势的一方。
最后我们重点总结一下我们在这些文章中的内容,我们在前面提到的一句话,就是如果你不能衡量它,那么你就不能有效增长它。我们做数据分析是为了能以量化的方式来分析业务问题。其中有两个重点词语:量化和业务;然后我们就知道数据本身并没有任何价值,而一切数据分析的核心是分析方法。数据分析的三大作用,主要是现状分析、原因分析和预测分析。数据分析的第一步就是建立指标体系,但是不是所有的指标都是好的,我们需要找到产品的指标。除此之外,不同时期的北极星指标不一样,不同业务的北极星指标也不一样。其次就是数据分析大体可以分三类:利用维度分析数据、使用统计学知识如数据分布假设检验、使用机器学习。最后就是维度分析数据是一种自上而下的思路,这种思路多是用于产品的数据分析体系或者模型的建立,从而保证数据分析的全面性。
以上的内容就是小编为大家介绍的数据分析的相关知识了,大家看了这篇文章以后一定有不少的收获了吧,希望这篇文章能够给大家带来帮助,最后祝愿大家早日学会数据分析并进入到自己喜欢的数据分析工作岗位,成就人生的美好与绽放。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07