京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在上一篇文章中给大家讲述了数据挖掘的四条原则,遵守了这四条原则可以帮助我们更好地应对数据挖掘的工作,但是数据挖掘还是需要模型的,我们对数据挖掘模型的选择也会影响我们的工作。那么怎么选对模型提升呢?下面我们就来给大家讲一讲选对模型提升的方法。
通常来说,没有深刻的业务理解去做数据挖掘往往是事倍功半,行业的业务理解越透彻,就越能抓住数据中本质的特征,诸如图像识别等场景已经可以靠神经网络来自动查找特征了,但大多数行业领域不行,还是要靠业务专家,多组织一次讨论获取的灵感可能远远好过于在算法上折腾一个月。而没有更多更好的数据去训练模型,这就是一件十分困难的事情了,一定要相信数据的重要性远远超过算法,很多初级的建模师算法能力很强,但就是做不成事,往往是因为其对于自身企业的数据理解太浅所致,这些都是我们需要注意到的事情。
如果数据不变,数据挖掘训练的边际效益并不高,同样的一份数据用不同的算法反复训练,比如F1差值并不是很大大,如果要尽快的提升模型的效果,要讲究点方法,尽量遵循以下优先级:业务>数据>算法。只有遵循了这个优先级,知道孰轻孰重,那么我们才能够做好模型的选择。
而一般来说,企业的数据挖掘师都需要通过长时间的取数训练,如果能做过数据仓库的更好,这样对于企业的数据体系有个全局的认识,在特征选择时有更多的发挥空间,大数据中最强调的一个特征是维度多,也一定程度说明了数据多样的重要性。比如基于运营商的语音通话数据可以初步判定欺诈电话,但这个准确率还不高,如果加上社交网络数据,判定就变得很准确了,这就是多维数据的力量,同时数据建模师如果不理解运营商的业务和数据,则可能无法想到这个维度。所以,数据挖掘师还是要清楚这些内容的。
通过这些文章我们给大家介绍了很多提高数据挖掘能力的方法,在进行数据挖掘工作的时候,也是不断地对我们数据挖掘能力的培养与锻炼,只有提高的数据挖掘的能力,我们才能够做好数据挖掘工作,提高自己的职业竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31