
我们在上一篇文章中给大家讲述了一部分提高数据挖掘能力的办法。当然,这也只是从一个方面进行讲述的,还需要从多个角度才能够全面提高数据挖掘能力,下面我们就给大家讲述一下数据挖掘能力提高的其他方法。
首先,需要我们降低变量准备时间,这是因为数据挖掘中数据准备时间过长,企业除了考虑数据仓库建模,还需要考虑是否在此基础上建立一个数据挖掘的数据中台,我们必须了解数据中台的价值,数据挖掘中台属于数据中台的一部分,行业特性会比较明显,比如电商有电商的数据挖掘中台,运营商则有运营商的数据挖掘中台,只要你在某个行业数据挖掘做多了,变量准备做多了,这样我们自然会找到一些共性的东西,如果能把它们沉淀下来,就能降低变量准备时间,而建立数据挖掘中台涉及IT战略问题,对于传统被动型的数据管理机制流程都是挑战,比如要建立一支中台团队就不容易。由此可见,中台是一个十分重要的事物,了解了这些,我们才能够为提高数据挖掘能力做好准备。
然后就是通过运营保有挖掘资产,就目前而言,离网模型在某些企业做的次数会超过几十次,重做有很多理由,比如市场环境变了,原来模型不好用了等等,但重做意味着对原有投入资源的极大浪费,是最大的不敏捷。很多的企业在建设IT的时候都是重视建设,轻视运营,由于数据挖掘的模型受业务和数据变化的影响很大,随着时间推移效果下降是必然的事情,而且这个折损跟固定资产折损还不一样,很多折损虽然说还是能够正常使用的,但模型效果变差就意味着效益变差,模型更要拼运营能力。
从这个角度看,如果你觉得一个模型重要,就要把它当成一个产品,用产品化的思维去运营它,比如设置独立的模型经理,从用户、流量和效果等角度去持续的做提升,很多企业模型建完推广完了就撒手不管了,这注定了模型的悲剧。模型运营投入的代价是巨大的,一个有1000个挖掘模型的公司,负担和压力会非常大,这就需要我们重视模型和运营。
好了,在这篇文章中我们给大家讲述了两个提高数据挖掘能力的方法,在进行数据挖掘的时候,一定要重视模型的应用,这样我们才能够做好数据挖掘工作,进而提高自己的工作效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15