你真的无法避免,是吗?你看哪里就提到哪里。你的LinkedIn订阅、就业市场、新闻订阅、试图吸引你注意力的教育项目(还有你的入学费)。但数据科学到底是什么?它通常被描述得很模糊,留下了许多不尽如人意的地 ...
2022-02-21“数据科学家是用来分析和解释复杂数字数据的人,如网站的使用统计数据,尤其是为了帮助企业决策。” -牛津词典 “数据分析师是处理数据以提供洞察力的专业人员,他们获取原始或非结构化数据, ...
2022-02-21作者Renato Boemer,Renato Boemer 所以,你研究数据科学已经有一段时间了,现在你期待着下一步:找到你的第一份工作,成为一名数据科学家。然而,如果这不是你的第一份工作,那么这可能是你第一次申请一 ...
2022-02-21作者Ilro Lee,新南威尔士州客户服务部高级分析部门经理 在数据科学行业,仅仅成为一名熟练的数据科学家是不够的--你需要卖掉你的项目和你自己。推销一个想法或你自己的第一步是开发一个坚实的电梯推销, ...
2022-02-21由图比的数据科学家迈克尔·伯克 交流是数据科学工作中最具挑战性的方面之一。这是我的笔记… 互联网怎么想 有一个基于研究的古老格言,即93%的交流是非语言的。你的交流55%是肢体语言,38%是语音,7% ...
2022-02-21我最近写了一篇题为数据科学家、数据工程师和其他数据职业的文章,解释说,在这篇文章中,我尽了最大努力简明扼要地定义和区分了五种流行的数据相关职业。在那篇文章中,每一个职业都得到了非常高水平的单句 ...
2022-02-21对于经常阅读我文章的人来说,你可能会认为我是这个星球上最矛盾的人。我不怪你。 我最近注意到,在与人的口头或书面交流中,我对与我交流的人做出了大量的假设。我没有明确地定义非常重要的方面,然后才 ...
2022-02-21有一个关于ML(机器学习)的炒作列车正在进行,许多初学者正成为这个炒作列车的受害者,因为他们是因为错误的原因进入的。你的教授会解释如何获得博士学位。如果你想变得更好,或者你的同行告诉你如何获得更好 ...
2022-02-21当你试图在其他数据专业人士中脱颖而出时,确保潜在的雇主了解你的能力是至关重要的。了解Amazon Web服务(AWS)的情况越来越有用。以下是在当今就业市场上推销AWS技能的五种方法。 1。提及参加比赛 就像 ...
2022-02-21我们最近有一个博客,在那里我谈论了18个学习数据科学的在线资源。显然,对于一个人来说,18个平台太多了,而且不是所有的平台都与你相关,这取决于你的经验水平和你在旅途中的位置。 因此,我想做的是根据 ...
2022-02-21目录表 介绍 机器学习工程师 自然语言处理工程师 数据工程师 数据科学家 摘要 参考文献 介绍 When looking at data scientist salaries and data scie ...
2022-02-21在科技行业之外,银行和保险可能是数据科学家的最大雇主。鉴于金融服务一直依赖于数据和模型--例如贷款批准或保险承保--这并不奇怪。但是,作为一名数据科学家,你如何决定它是否适合你呢?你将解决哪些现实世界的 ...
2022-02-21comments 市场上有很多工作需要你有数据科学背景。有时会让人困惑。这让你很难知道你是否胜任一份工作。有时,公司有重叠的工作描述,甚至他们自己对工作应该涵盖的任务的具体理解(和名称)也没有帮助。 我 ...
2022-02-21语境 当我第一次申请l时,我想同时成为一名自由职业者和一名“真正的ML工程师”。 在此之前,我在Nordeus担任机器学习工程师,Nordeus是一家顶级移动游戏公司,以其旗舰游戏TopEleven上有穆里尼奥的脸而 ...
2022-02-21介绍 我最近读到一篇文章,将数据科学描述为一个过饱和的领域。文章预测ML工程师将在未来几年取代数据科学家。 根据这篇文章的作者,大多数公司致力于用数据科学解决非常相似的业务问题。因此,数据科学家 ...
2022-02-20导言 当你考虑你的第一份数据科学工作或你的下一个数据科学职位时,你会想问自己什么是重要的。对我来说,我在数据科学方面有过几个职位,这些是我认为在选择下一份工作时必须考虑的一些最关键的问题。 ...
2022-02-20在2021年底,人工智能(AI)和机器学习(ML)领域不再是未来不确定的新生领域。人工智能和ML已经发展成为对更广泛的数据科学世界具有巨大影响力的影响领域,这一事实在今年比以往任何时候都更加真实。 然而,随着A ...
2022-02-20在科技界的所有角色中,数据科学家的头衔和工作职责可能是变化最大的。一个数据科学家必须戴很多不同的帽子,亚马逊的数据科学家的日常工作可能与微软的数据科学家有很大不同。从发现可以从收集、分析和理解数 ...
2022-02-202022年最受欢迎的数据相关职业细分 三年前,我面临着一个将伴随我余生的决定--“<我>我要做什么谋生?”我刚刚完成高等教育,高中刚刚毕业。 在与朋友和家人讨论了很长时间后,我选择了“21世纪最性感的工 ...
2022-02-20自COVID19开始以来,远程工作或在家工作已经变得有名无实。在家工作有很多好处,其中之一是额外的时间。所以,如果你手头有更多的时间,想赚更多的钱,那么就跟随这些高薪的数据科学兼职吧。这些兼职也可能成为你 ...
2022-02-20在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06