我们每个人都需要一份简历来展示我们的技能和经验,但我们要付出多少努力才能让它产生影响力。不可否认,简历在我们的求职过程中起着关键作用。本文将探讨一些简单的策略来显著改善数据科学简历的呈现方式和 ...
2022-02-28我只想说,你是选择数据科学还是数据工程,最终应该取决于你的兴趣和你的激情所在。然而,如果你坐在篱笆上,不确定该选择哪一个,因为他们是同样感兴趣的,那么继续阅读! 数据科学一时成为热门话题,但 ...
2022-02-28自2012年《哈佛商业评论》将数据科学家评为“21世纪最性感的工作”以来,似乎每个人和他们的母亲都在争先恐后地发展他们的数据科学技能。 而且是有充分理由的!根据2021年Robert Half Technology薪资指南, ...
2022-02-28介绍 在软件开发、信息安全和数据分析的长期职业生涯中,我观察到,除非得到非常好的管理,否则大型、复杂和压倒性的项目可能无法满足风险承担者的需求。相比之下,我参与的大多数成功的数据分析项目在范 ...
2022-02-28注意:这是本文的第二部分。你可以在这里阅读第一部分。 分析测试结果 新颖性和首位效应 当产品发生变化时,人们对它的反应会有所不同。有些人习惯于产品的工作方式,不愿意改变。这被称为首要效应 ...
2022-02-28全栈数据科学已成为计算机科学领域最热门的行业之一。从传统数学发展到数据工程等概念,这个行业需要广泛的知识和专业知识。它的在线资源、书籍和教程的需求呈指数级增长。对初学者来说,至少可以说,这是压 ...
2022-02-28这篇文章的目的不是比较角色,好像一个人应该得到更多的钱或不应该得到更多的钱,而是一个指导,允许这两个领域的专业人士根据他们目前的工资进行评估。然而,这是陈词滥调,当要求更高的工资时,记住这两件事 ...
2022-02-28comments 即将到来的假期提供了一个理想的机会,让你作为一个数据专业人士留下深刻的印象。这是一年中最忙的时候,鉴于该领域最近的增长,公司领导人可能会在2022年提拔一些工人。如果你现在给人留下深刻印象 ...
2022-02-28许多“如何将科学数据化”的课程和文章,包括我自己的课程和文章,都倾向于强调统计学、数学和编程等基本技能。然而,最近,我通过自己的经历注意到,这些基本技能很难转化为实际技能,从而使你能够就业。 ...
2022-02-28是的!这将发生。然而,你可以通过成为一名公民开发者,在这个颠覆性的时代中实现转折和繁荣 这是一个大规模颠覆性数字转型的时代。数据的供应每年都在成倍增加--由我们周围的数字化驱动,来自人与人之间的互 ...
2022-02-28有哪些数据科学项目组合的想法可以让你得到这份工作? 当雇主雇佣一个数据科学家时,他们通常会寻找一个有能力为他们的业务创造收入和机会的人。编程、机器学习、统计学等知识不足以获得一份数据科学工 ...
2022-02-28很少有人喜欢公开演讲。然而,它几乎在任何工作中都是必不可少的技能。数据科学对此也不例外。作为一名数据科学家,你必须向利益相关者展示你的想法和发现,这就是为什么你在面试数据科学家职位时经常要做陈述。 ...
2022-02-21大约18个月前,由于新冠肺炎疫情,我失去了工作。我在大学里做兼职家教。我从家教中得到的钱被用来支付食物、汽油和汽车等费用。 在政府对全国实施封锁限制后,我无法继续教学。我也上不了大学,只能在家学习。 ...
2022-02-21作者Zulie Rane,自由撰稿人和编码爱好者 20世纪60年代以来,大数据在全球范围内生根发芽、不断拓展。根据toOracle的说法,大数据是“包含更多种类、以越来越大的数量和更快的速度到达的数据。”随着大数据的 ...
2022-02-21作者Zulie Rane,自由撰稿人和编码爱好者。 数据分析是一个非常酷的、有前途的行业。它一直在上升很长一段时间,这解释了为什么这么多人想知道如何进入数据分析。自从互联网和智能手机的广泛使用,疯狂的数 ...
2022-02-21我最近写了一篇题为数据科学家、数据工程师和其他数据职业的文章,解释说,在这篇文章中,我尽了最大努力简明扼要地定义和区分了五种流行的数据相关职业。在那篇文章中,每一个职业都得到了非常高水平的单句 ...
2022-02-21作者Leon Wei,Instamentor.com创始人,前高级经理。苹果的机器学习。 在2021年初离开苹果的最后一份工作之前,我已经做了六份企业工作,全职专注于InstamentorandSQLPad:我在Covid期间开始的两个副业项目 ...
2022-02-21由高级经理(数据科学)Sharan Kumar Ravindran撰写 一个人不需要有天生的天赋就能成为一名成功的数据科学家。然而,要在数据科学中取得成功,需要一些技能。所有这些关键技能都可以通过适当的培训和练习获得。 ...
2022-02-21作者布兰登·科斯利,FastDataScience.ai 数据科学家需求不足,没有两种方法。工作岗位嗯,有很多空缺,这个行业似乎只是在这个后疫情时代的数字世界里才有所增长。因此,数据科学专业的学生也是世界劳动力 ...
2022-02-21数据科学家在他们的指尖有一个可能性的世界。其中许多都位于商业智能和数据分析领域。在商业环境中,发现增长机会和低效率以及击败竞争对手是最重要的,像这样的纪律可能是最有价值的。 数据专家可以通过 ...
2022-02-21在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06