京公网安备 11010802034615号
经营许可证编号:京B2-20210330
市场上有很多工作需要你有数据科学背景。有时会让人困惑。这让你很难知道你是否胜任一份工作。有时,公司有重叠的工作描述,甚至他们自己对工作应该涵盖的任务的具体理解(和名称)也没有帮助。
我们将为您提供一个指南,帮助您应付所有需要数据科学背景的不同数据科学职位。因为这些数据科学工作需要相同或非常相似的技能,所以我们将首先讨论这些工作之间的相似之处。我们还将介绍找到一份工作所需的资格和数据科学技能,以及你可能会遇到的面试问题。然后我们会讨论一些具体的工作描述,技术技能和职业轨迹,包括工资。
如何获取?
数据科学,顾名思义,是几个学科之间的十字路口。它涉及编程技能,结合数学和/或统计知识以及业务领域的专业知识。从这个定义中,我们可以回答科学家的数据通常来自哪里。
他们的正规教育通常包括计算机科学、数学、统计学、经济学或任何类似的定量领域的学位。对于一些数据科学工作来说,人文领域的学位也是不错的选择,尤其是如果这份工作更注重人的行为。
根据工作资历的不同,你可能会被要求拥有硕士学位甚至博士学位。
我需要什么技能?
这取决于很多因素,当然,不同的数据科学工作之间也有差异。然而,对于几乎所有需要数据科学背景的工作,您都需要具备一些技能。唯一的区别是你在工作中会在多大程度上使用这种技能。
职业轨迹
你可以成为一名数据科学家,没有一种方法,也只有一种方法。这取决于你的教育和以前的工作经验。然而,人们通常是从数据分析师开始的。然后,根据他们的兴趣和技能,他们通常朝着两个方向前进:一个是更多地与数据和数据基础设施合作,另一个是更专注于数据分析。
你可以在下面的插图中看到这个轨迹。有些工作有时需要其他教育,如商业或人文学位。
所有这些途径都可以让你成为一名数据科学家。你可以在多个方向移动;这完全取决于你的公司,职业发展,兴趣等等。
以下是你可以在下面的工作细分中找到的数据科学工作标题列表。该表显示了数据科学工作标题和平均年度总薪酬。我们已经根据上面的职业轨迹安排了工作。这样,如果你走一条典型的成为数据科学家的道路,你就能明白你的工资会如何上涨。
| Job title | Average total compensation ($USD) |
| Data analyst | $70k |
| Database administrator | $84k |
| Data modeler | $94k |
| Software engineer | $108k |
| Data engineer | $113k |
| Data architect | $119k |
| 统计学家 | $89k |
| Business intelligence (BI) developer | $92k |
| Marketing scientist | $94k |
| Business analyst | $77k |
| Quantitative analyst | $112k |
| Data scientist | $139k |
| Computer & information research scientist | $142k |
| 机器学习 engineer | $189k |
查看我们以前的文章,科学家们用多少数据来发现工资,以及工资是如何受到几个因素的影响的。
职务描述
数据科学家是使用数学、统计和编程技能从数据中获得洞察力的人。他们将收集、组织、清理和分析数据。这部分与数据分析员一样。但是,它们更具有前瞻性和预测性。他们将使用这些数据来建立机器学习模型。他们通过在可用数据中发现趋势、模式和行为来帮助他们做出预测。他们这样做是为了解决业务问题,提高公司在销售、客户经验、成本、收入等方面的业绩。
这是最一般的角色描述,它涵盖了作为具有数据科学背景的人所需要的大部分技能。下面你会发现的所有其他工作都是这份工作的衍生物,需要不同的数据科学知识和技能的技术重点。
所需技能
编程语言
平台工具
技术技能
技术重点
数据分析和报告。
职务描述
本数据科学职位要求收集、组织和清理数据。之后,他们被要求执行定期和临时分析并提供报告。通过这种方式,它们可以帮助做出业务决策,并解开一些业务问题的答案。数据分析员通常需要将数据可视化并交流他们的分析结果。在某种程度上,我们可以说,数据分析师是在用数据来描述过去和现在,而数据科学家则是在用数据来预测未来。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据基础设施、数据清洗、数据准备和操作。
职务描述
数据工程师的主要任务是开发和维护数据基础设施。它的目的是将数据转换成“可分析”的格式,并使数据科学家和数据分析员能够获得这些数据。这意味着他们必须收集、维护、操作和加载数据以供其他人使用。与数据分析师和数据科学家相比,数据工程师更专注于提取、转换和加载(ETL)数据。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
模型构建和部署到生产
职务描述
这个数据科学的职位要求你设计、构建和维护人工智能(AI)软件和算法,这些软件和算法将自动预测模型,并使机器能够在没有任何操作指令的情况下运行。为此,您必须组织和分析用于训练和验证机器学习模型的数据。这一描述表明,机器学习工程师与数据科学家是相同的,只是专注于构建和部署机器学习模型。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
研究计算、用户和业务问题。试图理解用户、产品和功能的深层次问题和行为。
职务描述
这个数据科学的职位比我们经历过的其他职位更多的是理论和研究层面。研究科学家探索计算问题,然后改进现有算法或编写新算法来解决这些问题。他们还创造了新的计算语言、工具和软件,以改善计算机的工作方式和用户的使用体验。
通常,你会在三个领域中的一个领域工作,重点是硬件、软件或机器人。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
应用于营销和销售数据的数据科学,解决与营销和销售相关的业务问题(例如,现场力量规模和营销ROI)
职务描述
在这个数据科学职称下工作的人是使用科学方法处理营销数据的人。通过正确解释数据,在数据中找到揭示客户行为的公共模式,您将这样做以支持决策。为了达到这个目的,你将进行实验来证实或否定这些假设。这与数据科学家基本相同,但您使用的是营销类型的数据,如电子邮件参与数据。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
构建图形仪表板
职务描述
BI开发人员是一个精通数据的工程师,他开发和维护BI接口,并使用BI工具。这些工具允许查询和可视化数据、创建仪表板、定期和临时报告。在某种程度上,这是一个数据工程师(ETL)、数据分析师(分析和报告)和软件工程师(软件开发)的组合。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
类似于数据分析师,但也可以专注于内部报告,如财务和改善公司的系统和流程。
职务描述
这个数据科学的职称评估公司的系统和流程。他们分析它们并提出解决方案,通常以改进或新的系统和其他技术改进的形式。这样做的目的是为了降低成本,提高公司的效率和决策,从而赚取更多的钱。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据建模与数据库设计
职务描述
他们的工作是设计、改进和维护数据模型,然后将其转换为数据库实现。他们这样做的目的是提高数据可用性和数据库性能。为此,他们需要与数据管理员和数据架构师合作。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据库管理与维护
职务描述
这个数据科学的职位是负责,嗯,数据库管理。这意味着他们在数据库实现中与数据建模师和数据架构师一起工作。只是它们更侧重于实际和技术问题,而不是概念问题。他们的工作是确保数据库的可用性,这包括允许(或不允许)访问数据库,备份和恢复数据,确保数据的安全性和完整性,以及数据库的高性能。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据管理的体系结构和基础设施
职务描述
与数据建模师和数据库管理员相比,数据架构师是一个需要高层次观点的数据科学职位。数据架构师的工作是考虑公司的业务需求,并开发完整的数据管理体系结构。这不仅仅涉及数据库,还包括如何收集、使用、建模、检索和保护数据的框架。一般来说,这意味着提供一个从数据进入公司到离开公司的体系结构。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
软件开发
职务描述
这个数据科学的职位头衔相对类似于数据工程师。主要的区别是他们通常不像数据工程师那样关心数据基础设施。相反,他们在此数据基础设施之上构建软件,这允许最终用户使用底层数据和数据基础设施。
与数据科学家相比所需的其他技能
程序设计语言
平台工具
技术技能
技术重点
数据统计分析
职务描述
这个职位头衔与数据科学家基本相同。不同的是,它只专注于数据科学家工作的统计部分。他们还分析数据,将统计方法应用于数据,并识别模式和趋势,这将提供业务洞察力和支持决策。
与数据科学家相比所需的其他技能
程序设计语言
平台工具
技术技能
技术重点
专注于金融数据的数据科学家
职务描述
这份工作与数据科学家基本相同,但专注于金融数据。量化分析师(或“量化员”)将分析数据并建立模型,以帮助公司了解金融市场及其趋势。根据这些分析和模型,公司将决定其投资、外汇和股权交易、贷款批准等。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
数据科学是一个广阔而不断发展的领域。我们给你的14个不同的数据科学工作类型的列表不是最终列表,因为新的数据科学工作类型几乎每天都在创建。这也取决于公司的组织和规模,他们将如何称呼某个职位。这可能意味着将几个工作类型合并为一个,或者将一个工作类型分解为几个子类型和专门化,所有这些都由几个人执行。
然而,这些数据科学工作标题通常涵盖了具有数据科学背景的工作。每个职位描述都是具体的,但我们相信你会在我们的网站上找到适合所有职位的面试问题。您可以在不同的编码问题和非编码问题之间进行选择,所以请自便。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16