京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据科学家是用来分析和解释复杂数字数据的人,如网站的使用统计数据,尤其是为了帮助企业决策。”
-牛津词典
“数据分析师是处理数据以提供洞察力的专业人员,他们获取原始或非结构化数据,并提出分析结果,以产生可消化的结果,供高管和其他人用于决策。”
-Techopedia
“数据科学家是能够根据过去的模式预测未来的人,而数据分析师只是从数据中获得有意义的见解的人。
所以现在我们有了定义,我认为真正理解两者区别的最好方法是进行比较。
*建议这样做。还有其他途径可以成为一名数据科学家/分析人员。看看我之前的帖子。
虽然他们在两种职业道路上有许多相似之处,但也有许多不同之处。数据科学家得到的报酬越高,责任就越大。这项额外的责任需要更多的学习、更多的知识和更多的练习您的编码技能。
下面是一些建议,如果您希望从数据分析师过渡到数据科学家,我会建议您做些什么。
扮演数据科学家的角色。
如果您已经决定转变为一名数据科学家,您必须做了大量额外的阅读,以完全理解成为一名数据科学家所需要的内容。您将从描述数据的趋势到使用现有数据发现新数据,并建立机器学习模型来支持您的假设。
数据科学家:
提高技能。
作为一名数据分析师,您可能不是每天都在编码。你的工作要求包括你编写代码和使用你的技术技能,然而,你的一些时间可能被分配到其他地方,例如识别趋势以帮助商业决策。作为一名数据科学家,拥有编写代码的能力是至关重要的,因为您将在大部分时间内进行编写,同时还要能够轻松地切换和使用不同的编程环境。这可能要求您理解常用的不同编程语言(如R、Python和Java)的语法。
与数据科学家相比,数据分析家使用的数学和统计方法非常少。因此,复习你的数学和统计数据将对你大有裨益,因为你将不得不在你的日常生活中应用这些知识。您将不得不从头开始编写算法,并充分理解这些机器学习算法是如何工作的。
你做的代码越多,你学的编程语言越多,你就会成为更好的数据科学家。你可以通过练习你的代码,创建辅助项目,参与到代码挑战中,比如Kaggle、LeetCode等等来实现以上两点。你知道你是否能成为一名数据科学家的唯一方法,就是练习过数据科学家的生活。
如果您打算从数据分析师过渡到数据科学家,我希望这能帮助您了解这两个角色之间的差异,并为您提供指导。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28