京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们最近有一个博客,在那里我谈论了18个学习数据科学的在线资源。显然,对于一个人来说,18个平台太多了,而且不是所有的平台都与你相关,这取决于你的经验水平和你在旅途中的位置。
因此,我想做的是根据经验和目标将您的数据科学旅程或数据科学家职业道路分为不同的阶段,并推荐一些在线资源,以帮助您在数据科学家职业道路上所处的阶段。
我所做的是与社区中的一群数据科学家交谈,询问他们的旅程,并收集了一些对他们的职业生涯有帮助的在线资源的建议。然后我将这些信息与我的数据科学家职业道路和我成为数据科学家所用的资源进行了匹配。
我想做的是与你分享一个数据科学的4步旅程,从完全的新手到获得一份数据科学工作,以及在你的数据科学家职业道路上每一步都可以使用的资源。
我从与社区的交谈以及我自己的旅程中收集到的是,作为一名数据科学家,你的职业生涯可以分为四个不同的阶段。从一个完全的新手到获得一份数据科学工作,有四个阶段:
学习语法和工具是数据科学家职业道路上的第一次接触。
你在这个阶段的目标是:
整个阶段的重点是学习如何编码,统计和数学,建模,所有的理论,并测试您将在工作中使用的工具和平台。在这个阶段,每个人都是初学者。所以,你可能已经从大学毕业,也可能还在上学,或者你可能已经换了职业,但你可能只有一两门编码课,或者你可能根本没有任何编码经验,但这个阶段是为了获得一些关于平台、代码和数据科学类型问题的知识。
因此,您想利用这些在线资源来学习和接触数据科学,实际上是在下图的底部,您是一个初学者:
我自己从模式分析开始,这在一定程度上帮助我很好地学习了SQL和Python,然后我不得不切换到下一个平台来提升我的水平。但是在第一个阶段,当您开始接触时,上面图表中的任何一个平台都将帮助您接触编码和数据科学类型的问题。
除了模式分析之外,我还推荐Coursera或Udemy提供的完整的数据科学课程,让您了解并了解您是否对数据科学感兴趣。
现在,您已经学习了这些工具,并了解了在数据科学中要处理的问题类型,您希望摆脱教程模式,进入稍微复杂一点的内容。这让你进入第二阶段。
在第二阶段,您要做的是摆脱教程模式,进入对行业或您想要进入的数据科学类型更专业的主题。
对我来说,DataCamp使我摆脱了教程模式。他们有一系列专门的主题,让我能够利用数据科学的主题,比如开发机器学习模型,并将其专门化或应用到我感兴趣的特定行业中。
如果您看看下图中的一些其他建议,我们不仅有DataCamp,而且还有其他在线资源,如CodeAcademy、StrataScratch和LeadCode。
所有这些平台都可以帮助您提高专业类型主题的技能,这些主题可以应用于数据科学或软件开发。
在数据科学家职业道路的这个阶段,你不仅要尝试走出教程模式,进入一些更复杂和更复杂的事情,而且你还在努力学习数据科学职业的实际含义。
为了更多地了解这一点,我和我的一些同事在这个数据科学社区中所做的是从其他人那里学习,比如从YouTube、Reddit和其他可能可用的讨论论坛。
观看YouTube视频或潜伏在Reddit的一些帖子的目的是了解其他数据科学家正在经历和暴露哪些问题。这就是你如何理解数据科学的职业生涯可能是什么感觉,以及你在未来可能会经历什么。
总之,数据科学职业道路的第二阶段是摆脱教程模式,进入更复杂、更复杂的数据科学主题,最终可以应用到工作中。除此之外,你还可以去Reddit等讨论论坛或观看其他数据科学家的YouTube视频,了解他们的经历,因为这将使你能够想象数据科学职业在你这一端可能会是什么样子。
现在,你在数据科学和编码方面有了一些进步,你对数据科学家的职业生涯有了一些了解,你对成为一名数据科学家感到兴奋。让我们进入数据科学家职业道路的第三阶段。
数据科学职业道路的第三步是那些已经决定真正进入数据科学作为一个职业并最终变得认真的人。现在,你要做的是离开DataCamp这样的教育平台,开始做那些将测试你的技能的项目。
对于这个用例,您希望尝试像Kaggle这样的非教育平台来完成一些项目,并与其他数据科学家进行排名。
如果你觉得你不想做Kaggle,想做一个在线或面对面的数据科学训练营,那么大会是一个非常受欢迎的,他们会教你如何进入数据科学。
很明显,一旦你完成了Kaggle,或者你完成了新兵训练营,你想面试prep成为一名数据科学家。那么你肯定应该试试这些面试准备平台中的一个,比如LeetCode或StratasCratch。
在这些平台上,你会发现大量来自真实公司的数据科学面试问题,这些问题可以让你在面试中获得成功所需的实践。
在这个阶段,目标是更认真地成为一名数据科学家。你应该做的是提高你的技能,这样你就可以在项目上工作,你可以产生有意义的影响,你可以在数据科学面试中非常迅速地回答和解决问题,而不需要太多的挣扎。所以,你需要的是在这些项目和面试问题上的大量练习。
现在唯一缺少的是找到一份工作并获得报酬,成为一名数据科学家,这将把我们带到数据科学家职业道路的第四步。
如果你以前没有任何行业或专业经验,也没有数据科学家的工作,走出第三阶段可能很难。所以,你需要做的是认真对待第三阶段。尽可能多地准备和学习,这样你就会知道编码和回答这些技术问题。当你找到第一份工作时,它将使你能够应用这些技能。
在这个阶段,您期待的是了解您感兴趣的项目类型。作为一个数据科学家,有很多不同类型的角色,也有很多不同类型的数据科学家。
您可以每天创建推荐引擎,您可以将东西部署到生产中或将东西保存在开发服务器上,您可以创建数据管道,您可以做更多类似于R&D类型的分析或其他任何事情。在最初的几年里,你可能会把它们都做完,然后随着你的专业和职业生涯的发展,你可能会在某些角色上做得更少,更专业。
在作为第一份工作的数据科学家职业道路的这个阶段,关键是要了解作为一名数据科学家,你喜欢什么,喜欢什么样的角色和职责。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16