
我们最近有一个博客,在那里我谈论了18个学习数据科学的在线资源。显然,对于一个人来说,18个平台太多了,而且不是所有的平台都与你相关,这取决于你的经验水平和你在旅途中的位置。
因此,我想做的是根据经验和目标将您的数据科学旅程或数据科学家职业道路分为不同的阶段,并推荐一些在线资源,以帮助您在数据科学家职业道路上所处的阶段。
我所做的是与社区中的一群数据科学家交谈,询问他们的旅程,并收集了一些对他们的职业生涯有帮助的在线资源的建议。然后我将这些信息与我的数据科学家职业道路和我成为数据科学家所用的资源进行了匹配。
我想做的是与你分享一个数据科学的4步旅程,从完全的新手到获得一份数据科学工作,以及在你的数据科学家职业道路上每一步都可以使用的资源。
我从与社区的交谈以及我自己的旅程中收集到的是,作为一名数据科学家,你的职业生涯可以分为四个不同的阶段。从一个完全的新手到获得一份数据科学工作,有四个阶段:
学习语法和工具是数据科学家职业道路上的第一次接触。
你在这个阶段的目标是:
整个阶段的重点是学习如何编码,统计和数学,建模,所有的理论,并测试您将在工作中使用的工具和平台。在这个阶段,每个人都是初学者。所以,你可能已经从大学毕业,也可能还在上学,或者你可能已经换了职业,但你可能只有一两门编码课,或者你可能根本没有任何编码经验,但这个阶段是为了获得一些关于平台、代码和数据科学类型问题的知识。
因此,您想利用这些在线资源来学习和接触数据科学,实际上是在下图的底部,您是一个初学者:
我自己从模式分析开始,这在一定程度上帮助我很好地学习了SQL和Python,然后我不得不切换到下一个平台来提升我的水平。但是在第一个阶段,当您开始接触时,上面图表中的任何一个平台都将帮助您接触编码和数据科学类型的问题。
除了模式分析之外,我还推荐Coursera或Udemy提供的完整的数据科学课程,让您了解并了解您是否对数据科学感兴趣。
现在,您已经学习了这些工具,并了解了在数据科学中要处理的问题类型,您希望摆脱教程模式,进入稍微复杂一点的内容。这让你进入第二阶段。
在第二阶段,您要做的是摆脱教程模式,进入对行业或您想要进入的数据科学类型更专业的主题。
对我来说,DataCamp使我摆脱了教程模式。他们有一系列专门的主题,让我能够利用数据科学的主题,比如开发机器学习模型,并将其专门化或应用到我感兴趣的特定行业中。
如果您看看下图中的一些其他建议,我们不仅有DataCamp,而且还有其他在线资源,如CodeAcademy、StrataScratch和LeadCode。
所有这些平台都可以帮助您提高专业类型主题的技能,这些主题可以应用于数据科学或软件开发。
在数据科学家职业道路的这个阶段,你不仅要尝试走出教程模式,进入一些更复杂和更复杂的事情,而且你还在努力学习数据科学职业的实际含义。
为了更多地了解这一点,我和我的一些同事在这个数据科学社区中所做的是从其他人那里学习,比如从YouTube、Reddit和其他可能可用的讨论论坛。
观看YouTube视频或潜伏在Reddit的一些帖子的目的是了解其他数据科学家正在经历和暴露哪些问题。这就是你如何理解数据科学的职业生涯可能是什么感觉,以及你在未来可能会经历什么。
总之,数据科学职业道路的第二阶段是摆脱教程模式,进入更复杂、更复杂的数据科学主题,最终可以应用到工作中。除此之外,你还可以去Reddit等讨论论坛或观看其他数据科学家的YouTube视频,了解他们的经历,因为这将使你能够想象数据科学职业在你这一端可能会是什么样子。
现在,你在数据科学和编码方面有了一些进步,你对数据科学家的职业生涯有了一些了解,你对成为一名数据科学家感到兴奋。让我们进入数据科学家职业道路的第三阶段。
数据科学职业道路的第三步是那些已经决定真正进入数据科学作为一个职业并最终变得认真的人。现在,你要做的是离开DataCamp这样的教育平台,开始做那些将测试你的技能的项目。
对于这个用例,您希望尝试像Kaggle这样的非教育平台来完成一些项目,并与其他数据科学家进行排名。
如果你觉得你不想做Kaggle,想做一个在线或面对面的数据科学训练营,那么大会是一个非常受欢迎的,他们会教你如何进入数据科学。
很明显,一旦你完成了Kaggle,或者你完成了新兵训练营,你想面试prep成为一名数据科学家。那么你肯定应该试试这些面试准备平台中的一个,比如LeetCode或StratasCratch。
在这些平台上,你会发现大量来自真实公司的数据科学面试问题,这些问题可以让你在面试中获得成功所需的实践。
在这个阶段,目标是更认真地成为一名数据科学家。你应该做的是提高你的技能,这样你就可以在项目上工作,你可以产生有意义的影响,你可以在数据科学面试中非常迅速地回答和解决问题,而不需要太多的挣扎。所以,你需要的是在这些项目和面试问题上的大量练习。
现在唯一缺少的是找到一份工作并获得报酬,成为一名数据科学家,这将把我们带到数据科学家职业道路的第四步。
如果你以前没有任何行业或专业经验,也没有数据科学家的工作,走出第三阶段可能很难。所以,你需要做的是认真对待第三阶段。尽可能多地准备和学习,这样你就会知道编码和回答这些技术问题。当你找到第一份工作时,它将使你能够应用这些技能。
在这个阶段,您期待的是了解您感兴趣的项目类型。作为一个数据科学家,有很多不同类型的角色,也有很多不同类型的数据科学家。
您可以每天创建推荐引擎,您可以将东西部署到生产中或将东西保存在开发服务器上,您可以创建数据管道,您可以做更多类似于R&D类型的分析或其他任何事情。在最初的几年里,你可能会把它们都做完,然后随着你的专业和职业生涯的发展,你可能会在某些角色上做得更少,更专业。
在作为第一份工作的数据科学家职业道路的这个阶段,关键是要了解作为一名数据科学家,你喜欢什么,喜欢什么样的角色和职责。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16