数据科学是一个不断扩展的领域。更多的行业继续依赖技术来收集和处理重要的信息,数据科学家的需求很高。然而,找到一份适合你需要的工作有时是一个挑战。在这些情况下,你可以转向自由职业。 自由职业者 ...
2022-03-14作者Frederik Bussler,显然AI的增长营销主管 AI饱和度 我经常分享学习人工智能和数据科学的资源,无论是谷歌或哈佛的课程,还是YouTube的全长教程。 与此同时,我听到了这样的担忧:“现在学习AI和 ...
2022-03-14多里安·马丁,GetGoodgrade 你想涉足数据工程吗? 好主意. 很多公司都在寻找数据工程师--如果你在LinkedIn上搜索“数据工程师”,仅在美国就会得到88,000多个好的职位。每个人都可以使用远程工作选 ...
2022-03-14当你开始从事数据科学方面的工作时,一些需要获得的技能将是显而易见的。你知道你需要在编码、分析和数学方面的经验,但你也应该培养一些软技能。虽然当你想到数据科学时,这些可能不会立即浮现在脑海中,但它 ...
2022-03-14作者尤金·颜,亚马逊应用科学家 “与其手动检查我们的数据,为什么不试试领英的做法呢?它帮助他们实现了95%的准确率和80%的召回率。“ 然后我的队友分享了如何使用k-最近邻来识别不一致的标签(在职位 ...
2022-03-14金融技术实施专家大卫·摩尔 招聘人员正在使用越来越复杂的软件和工具来扫描简历,并将其与张贴的工作职位和工作规格进行匹配。如果你的简历是通用的,或者工作说明模糊和/或通用,这些工具将对你不利。AI ...
2022-03-14由Mihail Eric著,《机器学习研究与教育》。 参加KDnuggets工作满意度调查,部分灵感来自这个博客。 以下是受此帖子启发的KDnuggets漫画 数据。它无处不在,我们只会得到更多。在过去的5-1 ...
2022-03-14由Polly Mitchell-Guthrie,副总裁,行业拓展和思想领导,Kinaxis。 如果一位数据科学总监领导分析团队超过10年,她的团队因其工作获奖,在会议上积极发言,并且拥有顶级项目的工业工程博士学位,你会雇佣 ...
2022-03-14获得面试对许多工作来说自然是必不可少的,数据科学工作也不例外。虽然关于这一主题的资源肯定不缺乏,但实际可行的建议却很少。在我找工作的过程中,我知道超过70%的求职者是通过某种形式的关系网找到工 ...
2022-03-14麦迪逊·亨特,地球科学学士学位本科生 无论你是刚毕业的,还是想换个职业的人,或者是一只类似于上面的猫,数据科学领域充满了现代工人清单上几乎每一个框中的工作。在数据科学领域工作可以让你有机会获得 ...
2022-03-14作者Yulia Lukashina,技术作家。 我完全相信每个人都能做好(赚到好钱!)只有在他们喜欢做的工作中。如果你对你的任务感到无聊,每天都不得不强迫自己,你就不能交付高质量的结果。 但如果数据科学让 ...
2022-03-14数据科学家是当今最受欢迎的专业人士之一。随着数据在现代商业中继续发挥越来越突出的作用,这个行业只会变得更有价值。考虑到这一前景,这是一个理想的时间追求作为一个数据科学家的职业生涯。 成为一 ...
2022-03-14作者安德里亚·劳拉,自由作家 “数据科学家”的工作岗位和个人资料每年都在变化。它的工资也是如此,有趣的是,两者都在不断上涨。 随着数据科学家的平均工资突破12.5万美元大关,职位空缺数量增长65 ...
2022-03-14作者:PerceptiLabs联合创始人兼首席执行官马丁·伊萨克森。 长期以来,版本控制工具一直是信息工作者的主要工具,尤其是那些需要在代码库上存储和协作的地方,同时维护完整的更改历史的开发人员。 多年 ...
2022-03-14在现代信息技术时代,数据科学自学有大量的免费资源。事实上,您甚至可以从无数可用资源中设计自己的数据科学课程。虽然从课程工作中获得的知识对于打好数据科学的基础是必不可少的,但你需要记住数据科学是一 ...
2022-03-14在这个前所未有的流行病时期,许多人发现他们的职业生涯受到了影响。这其中包括一些我曾经工作过的最有才华的数据科学家。在与一些亲密的朋友分享了我帮助他们在下岗后找到新工作的个人经历后,我认为 ...
2022-03-14自由数据科学家Arnuld谈数据 埃里克·韦伯(是的,那个长得不错的家伙带着一只可爱的狗)最近在LinkedIn上写了一篇帖子,讲述了当他开始数据科学生涯时,他希望自己能少做的10件事。这篇文章是我通过这十点 ...
2022-03-14罗曼·奥拉克,数据科学家。 我收到许多信息,向有抱负的数据科学家寻求建议。我不是职业建议方面的专家,所以对我写的一切都持怀疑态度。 我根据我对这个领域的观察和我多年来积累的经验给出建议。这是 ...
2022-03-14我已经在iZettle工作了大约四年了。我在这家公司的旅程并不是以机器学习工程师的身份开始的,而是随着我在公司的成长而过渡到机器学习工程师。 我的正规教育是计算机科学/软件工程,事实上我已经做了大 ...
2022-03-14网飞数据工程师欣然·威贝尔。 尽管数据工程师(DE)是2019年增长最快的科技职位,但没有太多关于数据工程面试期待什么以及如何准备的在线资源。 在过去的一年里,我在湾区的几家科技公司面试了数据工程师 ...
2022-03-14在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06