京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当我第一次申请l时,我想同时成为一名自由职业者和一名“真正的ML工程师”。
在此之前,我在Nordeus担任机器学习工程师,Nordeus是一家顶级移动游戏公司,以其旗舰游戏TopEleven上有穆里尼奥的脸而闻名。我在Nordeus的机器学习经历包括设计和实现一个智能系统,以帮助客户支持团队更快地解决玩家问题。它的本质是从大量的历史球员门票和代理决议中构建一个文本分类器。
我考虑了整个系统,数据(至少我是这么想的),以及对GPU的访问。从纸面上看,一切似乎都对我来说刚刚好,可以展示一个伟大的模型和一个更好的解决方案。
但这从未发生过。令我绝望的是,我花了一个多月的时间才意识到,我试图用来训练我的监督模型的数据集已经非常糟糕了。在意识到这一点之前,我花了数不清的时间和Jupyter笔记本试图让整个事情运转起来。我工作太忙了,抽不出时间看资料。我们可以说我缺乏经验没有帮助。
在这个失败的项目三个月后,我决定辞去工作,在Toptal开始我的自由职业之路。经过几轮面试和技术筛选,我进入了最后一轮。猜猜看?我得解决一个机器学习作业。几乎和我以前失败的那个一模一样。我有一周的时间来完成它。
很难描述那一周我不得不与之作斗争的消极自我谈话的数量。冒名顶替综合症的长长的阴影迷惑了我的头脑。
这一章有一个圆满的结局。我很好地解决了这个问题,我进入了托普塔尔。三年10个项目后,我可以说我处理冒名顶替综合症好多了。
勇敢是对你帮助最大的事情。自由职业者是勇敢的。如果你想了解更多,请查看我以前关于如何成为自由数据科学家的文章。
当你作为自由职业者/承包商工作时,来自你工作的反馈不会出现在季度或年度审查中。它每天都来。没有办法破解。客户期望您提供质量和快速。顺便说一句,这就是为什么你会比在目前的工作中得到更好的报酬的主要原因。
一旦你觉得你已经掌握了ML的基本原理,就把自己放在拳击台上。考验你自己。你很聪明,你能做到。参加更多的在线课程并不能让冒名顶替综合症消失。相信我.
IMHO排名前2的自由职业平台是
由于数据(大写字母,是的),ML工程比传统软件工程更难。
很少有机会给你一套完整的特性和标签来构建你的ML模型。相反,您通常需要自己生成训练数据。在这个意义上,我遇到的最常见的问题是:
数据是推动所有模型的神奇成分,从简单的线性回归到巨大的变压器模型。如果燃料不好,你开哪辆车都无关紧要。你不打算搬家。
这听起来如此琐碎和愚蠢,以至于我们(我包括我自己)ML工程师有一种令人惊讶的忘记的倾向。当您获得更多构建ML解决方案的经验时,您会更好地记住这一点,并在遇到问题时返回数据。
不能使用Stackoverflow调试数据集。你一个人在那里。你需要改变你的心态。你必须表现得像个解决问题的人。您需要了解数据集,最好的方法是将其可视化。我个人喜欢Tableau Desktop,但也有其他选择,如Power BI、Apache Superset等。如果您愿意,甚至还有Python库,如SweetViz。
无论您喜欢哪种工具,每次卡住时都要返回数据。
机器学习是一个涵盖广泛技术复杂性的领域:软件开发、操作化(MLOps)、经典ML、深度学习的前沿研究、硬件优化…
如果你试图掩盖一切,你会失去焦点,在表面上游荡太多。了解ML中的某些内容意味着您已经自己实现了它。句号。
例如,跟上DL的最新进展是非常棒的。但要有原则地去做。为自己设定一个明确的目标(例如,我想成为变压器模型的专家),并为自己建立一条通往该目标的道路,选择相关的论文、图书馆、网络研讨会,甚至会议。
从一个话题跳到另一个话题让你很忙但注意力不集中。保持谦逊。从小处着手,集中精力。一旦你到达那里,迈出下一步,征服另一个领域。
克服你的恐惧是每天(全职)的工作。不仅仅是在机器学习中,而是在你生活的每个方面,在这些方面你希望明天成长和变得更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01