京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当你试图在其他数据专业人士中脱颖而出时,确保潜在的雇主了解你的能力是至关重要的。了解Amazon Web服务(AWS)的情况越来越有用。以下是在当今就业市场上推销AWS技能的五种方法。
就像网络安全专业人员经常组建团队来应对对网络和设备的模拟攻击一样,拥有AWS技能的人可以参加帮助他们使用现有技能和学习新技能的竞赛。
在一个你可能想不到的例子中,国家足球联盟(NFL)有一个年度比赛,数据专业人员使用AWS来创造与比赛及其相关统计数据相关的新机会。
NFL足球数据和分析高级总监迈克尔·洛佩兹(Michael Lopez)表示:“我们对NFL和我们的合作伙伴继续使用数据和分析来推进我们比赛的创新方式感到非常自豪,大数据碗的成功是这一演变的重要组成部分。”
该活动还有一个导师部分。它将12名初级数据科学家与一些NFL的分析专家配对。参加这样的活动表明你渴望大规模地测试你的AWS技能。
即使你已经认为自己拥有非常先进的AWS技能,仍然有更多的东西需要学习。您的知识可以通过使整个组织符合数据存储和使用要求来加强整个组织。
例如,根据PCI要求6.5,客户仍然承担其开发的任何AWS应用程序的责任,并负责培训与这些工具相关的团队。更具体地说,公司必须解决常见的软件漏洞。花时间获得AWS认证可以向雇主表明你拥有最新的知识,并准备好应用这些知识。
基于云的技能对于帮助当今社会运行非常重要。人们使用云应用程序来保持高效并与团队成员协作。监督警务、医疗保健、交通和其他基本要素的部门使用的许多系统都在云中运行。AWS提供数字徽章,你可以用来显示你的认证,让雇主更有可能注意到它们。
投资组合是你炫耀自己作为数据专业人员所做工作的绝佳方式。尽管它们不能取代简历,但投资组合是很好的补充,因为它们让你展示项目的视觉方面。
推销你的技能的一个有效方法是使用AWS作为你的主要产品来建立投资组合。然后,您不仅展示了您的整体能力,而且还特别证明了您可以以有意义的方式应用AWS的专业知识。
您可以用于项目组合构建的一些AWS工具是免费层的一部分。在任何情况下,您都可以以最小的成本开始。
真正关心提高技能的人通常会寻找帮助自己成长的机会。尽管你当然可以用足够的献身精神自学,但与志同道合的人聚集在一起往往更有价值。交换建议和建议可以让你分享你所知道的,同时吸收他人的知识。
你也不一定需要旅行。例如,2021年6月,有一个面向科技女性的AWS虚拟会议。虽然该活动发生在澳大利亚和新西兰,但全世界的人都可以参加。
主题和活动涵盖点对点网络、职业发展、人工智能等。如果你以前参加过AWS的活动,值得用它们来推销自己。这样做向雇主表明你对职业发展的承诺,并保持你的知识最新。
增强你的简历是一个更传统但仍然有效的方法来显示你的AWS能力,让雇主感兴趣。不要仅仅将AWS作为一个要点列在您使用的工具和平台的一节中,而是要用有用的上下文来支持您的技能。提供尽可能多的细节,并在适用时关注AWS项目的积极结果。
还值得花更多的时间描述你拥有的高于平均需求的特定AWS技能。例如,一项调查发现,DevOps是有抱负的AWS专业人士简历中最需要具备的技术技能。
由于业务领导者迁移到云或将工作负载保留在多云环境中变得越来越普遍,因此您可能会提到管理多云或协助迁移的任何具体经验。
试图让自己尽可能吸引潜在的雇主可能是一项艰巨的任务。这通常是因为许多应聘者对发挥自己才能的想法犹豫不决。然而,重要的是要认识到,雇主确实需要具有AWS技能和理解云环境复杂性的人。
云计算将继续存在。这些小贴士将帮助你说服雇主,你有帮助他们公司成功的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01