
作者:PerceptiLabs联合创始人兼首席执行官马丁·伊萨克森。
长期以来,版本控制工具一直是信息工作者的主要工具,尤其是那些需要在代码库上存储和协作的地方,同时维护完整的更改历史的开发人员。
多年来,许多这样的工具来来去去或至少失宠了,但今天使用最广泛的系统是GitHub。GitHub之所以广受欢迎有多种原因,最明显的是它是基于云计算的,易于发现,而且定价方案即使是最节俭的经理也会乐意为其盖上橡皮图章。此外,机器学习(ML)从业者通常使用它来存储ML模型、数据和代码,包括我们PerceptiLabs。
但是,除了是一个强大的存储库之外,您是否知道GitHub也可以是一个强大的工具,用于您的求职和整体职业发展?
许多招聘人员和人力资源部门现在会查看应聘者的完整在线表现,以开发该人的个人资料。随着谷歌等在线工具提供强大的搜索功能,招聘人员希望尽可能了解候选人的一切,以判断他们是否适合特定的角色。因此,你的在线个人资料在你下次找工作中扮演重要角色也就不足为奇了。
在申请一个新职位时,你希望你的在线个人资料不仅仅是一份过时的LinkedIn个人资料和一些脸书上不太专业的照片。你真正想给那些想雇用你的人留下深刻印象的是,你不仅仅是一个在找工作的人。你想让他们看到你的热情、专业知识,以及你在社区中的积极参与,展示技术专长,并展示对手头主题的强烈理解。通过这样做,招聘人员将能够更好地将你与给定的角色相匹配。
这就是像GitHub这样的工具可能是无价的,因为它是展示你的技能、为人所知和展示你的能力的完美场所,而这种方式无法塞进标准的一两页简历中。
当你获得了追随者,追随他人,回应问题和问题,等等,你也可以开始建立你的同龄人网络和你的声誉。当你要介绍一个可以帮助你找到下一份工作的人,或者帮助别人找工作时,这些联系是非常宝贵的。你的声誉本身就是一种资产,因为招聘人员可能会看你是否有大量的追随者和任何星级,并判断你在同行中有多受尊重。
从您感兴趣的公司中识别并为GitHub回购做出贡献也是有益的。它还可以帮助您发现您可能想申请的公司,通过能够看到他们的代码提供的第一手资料。通过参与他们的产品,你可以向组织表明你对他们的技术有直接的兴趣和知识。
准备好开始用GitHub建立你的在线存在了吗?这里有几个小贴士要记住:
有各种各样的ML回购,你可以做出贡献,但这里有几个让你开始:
我们在PerceptiLabs的希望是,我们的repos将成为学习ML和我们的可视化建模工具的宝贵资源,以及用户可以在与用户连接的同时演示其ML知识的地方。在您为我们的GitHub回购做出贡献之前,我们鼓励您首先发布自己的私人GitHub回购。
最重要的是,享受你的贡献,与他人接触,展示你对机器学习的热情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10