
罗曼·奥拉克,数据科学家。
我收到许多信息,向有抱负的数据科学家寻求建议。我不是职业建议方面的专家,所以对我写的一切都持怀疑态度。
我根据我对这个领域的观察和我多年来积累的经验给出建议。这是我,建议年轻的我,因为我有类似的问题,在我的职业生涯开始。
我的建议是从实际项目开始,然后慢慢地进行理论研究。Kaggle笔记本是学习实际部分的好方法。
在Reddit社区或交叉验证社区中提问。
当您对自己的工具和实践知识感到满意时,我建议您自己为某些问题构造数据集(例如,您可以刮取数据),并对其应用ML算法。ML中最难的是数据集的构造。你甚至可以用它建立一个公司。
Kaggle是学习实际部分的一个很好的方法。
我建议您从免费资源开始,因为有许多免费资源可用于编程、机器学习和数据科学:
我个人很喜欢吴恩达的Machine LearningCoursera课程。这门课程开始很容易,然后随着它的进行逐渐变得困难。它的优点在于它专注于机器学习的基础知识。
我建议你至少听前几堂课。如果你不明白所有的事情,也不要担心,因为你可以在以后重温它。我也建议你不要只专注于一个课程。我们学得都不一样,没关系。
我们学得都不一样,没关系。
不要一个人学习!寻找并加入能帮助你学习和成长的在线社区。我在以下文章中写过关于数据科学社区的文章:
您可以开始在Excel中练习机器学习。尝试在Excel中实现线性回归。这是一个很好的第一个挑战,它会让你有动力。
开始在Excel中练习机器学习。
让我们对房间里的大象讲话。如果您刚刚起步,我建议您学习Python。主要原因有:
使用Python,您可以进行分析,从头开发模型,然后在生产中运行它。虽然我确信R中的模型也在生产中运行,但我还没有听说过(如果您的经验不同,请在评论中告诉我)。
别误会,如果你知道R,那完全没问题。数据科学团队通常使用这两种语言,一些人喜欢R,另一些人喜欢Python。
最后,这并不重要,因为有些模型必须用编译语言(Java,Go)重新实现,以便在生产中做出更快的预测。
Python使您能够进行分析、从头开发模型并在生产中运行它。
这是个很棒的问题。答案是肯定的--用大写字母。
无论您是否使用SQL数据库,您都应该了解关系数据库中的主要概念,如joins、group by、window functions、lag、lead等。即使在使用pandas、R或其他工具时,这些概念也是必不可少的。
如果您感兴趣,我还写了几篇关于SQL的文章:
答案是肯定的--用大写字母。
你知道的数学越多,从长远来看对你越好。了解数学将使您能够理解黑匣子机器学习模型的幕后发生了什么。从理论到实践的知识转移也更容易。
有了数学,你就会明白黑匣子模型的幕后发生了什么。
当你需要改进模型时,数学就变得至关重要。您需要数学来理解不同类型的模型、发行版等之间的差异。
资深机器学习工程师只需看优化函数就能说出一个模型的主要性质。
当你试图改进模型时,数学变得至关重要。
我的建议是提前考虑。每个领域都需要一名数据科学家,或者将来也会需要。问问自己,完成学业后,你希望在哪家公司实习?如果你已经听过一些相关的课程,就更容易获得生物信息学的实习机会。
提前想想。
你不需要博士学位。从事数据科学工作--意味着对现实世界的数据进行分析,并应用机器学习模型。
如果你的目标是做研究和开发新的机器学习算法(例如,在Deep Mind工作),那么你应该攻读博士学位。
你不需要博士学位。从事数据科学工作,但是...
参加LocalMeetups。公司在那里寻找新雇员。也许从数据质量评估部门开始--大公司有这些。在线社区也能有所帮助。
参加当地的聚会。
最近,我写道,“当你有多个工作机会时,接受一个有更好导师的工作机会。”
你怎么知道哪家有最好的导师?在面试过程中尽可能多地了解团队成员、经理、他们的背景等信息。查看他们的LinkedIn。他们在Quora、StackOverflow、Medium上写吗?做你的研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16