京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由Polly Mitchell-Guthrie,副总裁,行业拓展和思想领导,Kinaxis。
如果一位数据科学总监领导分析团队超过10年,她的团队因其工作获奖,在会议上积极发言,并且拥有顶级项目的工业工程博士学位,你会雇佣她吗?当然了!但是,如果她没有像深度学习、Kubernetes和TensorFlow这样的工具/技术的大量实践经验,这会让你停顿吗?这不应该,但这一工作要求在许多高级数据科学领导者的职位招聘中一直存在,所以让我解释一下谁适合领导团队,以及为什么使用最新玩具的经验不应该排在第一位。
几个月前,我和我上面提到的一位专业同事谈过,因为她在一家财富100强公司领导团队多年后,在一个分析和数据科学竞争激烈的行业上市了。她哀叹如此多的职位描述需要使用最新工具的“实际操作”经验。我很久以前就看到了需求和招聘需求之间的差距,所以我在LinkedIn上写了这篇文章。这篇文章引起了很大的讨论,所以我认为值得进一步评论。
我将向人力资源和那些雇佣数据科学领导者的人重复我的请求:如果你想让你的数据科学团队的成果最大化,请雇佣那些擅长领导人们并有数据科学成果交付经验的人。不要再坚持多年的最新工具和技术的实践经验,一旦他们被雇佣,他们就不会碰他们自己了。相反,重视他们实际需要的技能,这些技能对团队的成功比精通GPT-3更重要。
虽然您不希望有人与业务脱节,但您确实希望有人知道如何构建业务问题,帮助数据科学家将业务问题抽象为他们可以建模的技术结构,指导他们向业务领导人解释他们的结果,考虑可用性和部署,并发展职业生涯。我认为数据科学所需的技能就像凳子上的腿一样。编程经验、定量严谨性、商业敏锐性和人际交往技巧都是必不可少的,但大便需要一段时间才能平衡。一个初级数据科学家是一个团队的一部分,所以你可以负担得起他的凳子摇摇晃晃,因为其他人可以补偿他薄弱的地方。你领导的凳子需要平衡,但这种平衡是随着时间的推移发展成稳定的技能的结果。
几年前,我与另一位前同事安妮·特杰普(Annie Tjetjep)的一次交流很好地说明了这种平衡,她将数据科学家的开发与冷冻酸奶联系起来。她认为,人们从一套力量开始,就像第一个加入杯子的冷冻酸奶漩涡一样。对于大多数初级数据科学家来说,首先要发展的是编程和定量严谨性,这是他们在大学或通过在线课程和实践学习的。尽管研究表明,对沟通和人际交往技能的兴趣比任何其他技能都更能主导数据科学家的广告,但学术项目继续在这些领域缺乏课程设置。
随着时间的推移,安妮可能会补充道:“……创造力(我称之为信心),它改善了建模,然后是业务,然后是改进建模和创造力,然后是通信,然后是改进建模、创造力、业务和编程,但然后选择专注于通信、业务、编程和/或建模--如果没有其他维度,这些都无法在分析中可信地完成。在任何给定的时间里,维度上的优势都不一样强,除非他们什么都不知道或什么都不知道--两种选择都不太有效--谁会想要一层froyo?人的进化是不平等的,发展所有技能都需要时间,即使一旦你发展了它们,你可能会选择不积极保留所有技能。“额外口味的酸奶会被添加进来,就像数据科学家用经验添加她的技能集一样。
随着一名数据科学家在职业生涯中进入更高级的领导角色,她将需要发展自己的大便腿,专注于商业敏锐性和人际交往技能。当她达到总监级别或更高的级别时,她可能已经好几年没有写过动手代码了,也不应该。她将忙于领导,这意味着她沉浸在公司的业务中,吸引、留住和培养人才,确定数据科学可以在哪里增加最大的价值,确保数据科学成功地从实验室转移到生产,并将这种价值转化给非技术领导人。即使她错过了亲自动手编程,她也没有时间跟上最新的玩具和她盘子里的其他东西。
然而,这里有一个数据科学SVP最近的工作描述:“对R、SQL和Python(包括Tensorflow,Keras和XGBoost库)有很强的熟练能力。”此人还被期望领导一个“大型数据科学家团队”,以“提高公司的盈利能力,改善我们的客户体验,提高我们度量和管理风险的能力……提取有价值的业务见解,将这些见解转化为现实世界的好处,并向执行团队传达结果……与各部门的业务领域主题专家合作以理解问题和目标。”
斜体是我的,因为我的观点是,斜体动词是我希望高级领导级别的人做的事情,而不是写代码。领导者需要理解Tensorflow、Keras和XGBoost的业务价值、技术优势和局限性,但她不需要通过手工获得这些知识。在高级领导层面,自从这些工具诞生以来,她至少花了5-6年时间在领导级别上不断上升,不再处于战壕中。
从大学里雇佣新鲜人才的价值在于他们确实有这样的经验,在最新算法的定量严谨性方面有优势,如深度学习和包中的编程,如GPT-3。但是,尽管工具会发生变化,但最近的毕业生不会有深入的知识,因为正如所指出的,即使是最好的、最全面的课程也很难教授的,是持久的商业敏锐性和人际交往技能,这是在翻译、沟通、合作和理解等动词能力方面出类拔萃所必需的。
这些技能是吸取经验教训的结果,是多年来倾听业务用户抱怨他们的问题,并将这些症状转化为合理框架的业务问题的结果。初级数据科学家可能会跳起来解决问题的第一关,并投入他们所知道的最奇妙的数学来解决问题。随着时间的推移,他们会在正确地抽象问题和选择正确的方法(不总是最新的)来解决问题方面有所提高,但如果由已经吸取这些教训的人领导,他们会更快地到达那里。经验教会了我大量的知识,比如最终成功地向那些认为或意味着手术室的医疗保健领导人解释运筹学,或者让我的团队的模型因我们没有尽快将其纳入部署计划而萎靡不振。
数据科学计划的失败是由于领导的原因,而不是因为领导在去年没有增加他们的GitHub回购。咨询公司麦肯锡列出的10个失败原因都与我上面强调的动词有关--缺乏清晰的愿景、对业务价值的理解不足、翻译方面的差距、角色模糊、团队孤立等等。太多的数据科学项目失败了,所以让我们通过雇佣适合领导数据科学团队的领导者来让它们成功,而不是为它们编程。
生物:Polly Mitchell-Guthrie(@pollymguthrie)是Kinaxis行业拓展和思想领袖的副总裁,是授权人们做出自信的供应链决策的领导者。此前,她曾在北卡罗来纳大学医疗保健系统担任分析咨询服务主任,并在SAS担任过几个角色。她一直非常参与INFORMS的工作,这是一个领先的分析和运筹学专业协会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20