
作者尤金·颜,亚马逊应用科学家
“与其手动检查我们的数据,为什么不试试领英的做法呢?它帮助他们实现了95%的准确率和80%的召回率。“
然后我的队友分享了如何使用k-最近邻来识别不一致的标签(在职位名称中)。然后,LinkedIn在一致的标签上训练支持向量机(SVM);然后用支持向量机对不一致的标签进行更新。这帮助他们在职称分类器上达到95%的精确度。
这个建议在我们的讨论中是最有用的。对它的跟踪导致我们的产品分类器的最终准确率达到95%。我问她,她是如何贡献出这种批判性的见解的。“哦,我只是偶尔看看报纸。”她回答。具体来说,她每周都会读1-2篇论文,通常是围绕团队正在研究的主题。
通过阅读论文,我们能够了解其他人(例如LinkedIn)发现哪些有用(或者不有用)。然后我们可以适应他们的方法,而不必重新发明火箭。这有助于我们以更少的时间和精力交付工作解决方案。
如果说我比别人看得更远,那是因为我站在巨人的肩膀上。
-艾萨克·牛顿
阅读论文还拓宽了我们的视野。尽管我们可能在数据科学的狭隘领域工作,但切向研究的发展往往是有帮助的。例如,Word嵌入和graphshave的思想在推荐系统中很有用。同样,来自计算机视觉的思想--如迁移学习和数据增强--对自然语言处理(NLP)有帮助。
阅读论文还使我们了解最新情况。在过去的十年里,自然语言处理领域取得了长足的进步。尽管如此,通过阅读最关键的10篇左右的论文,我们可以很快跟上速度。通过了解最新情况,我们在工作中变得更有效,从而需要更少的时间和精力。然后我们有更多的时间阅读和学习,导致一个良性循环。
如果我们开始养成这个习惯,我们可以阅读任何我们感兴趣的东西--大多数论文都会有一些东西教我们。阅读我们感兴趣的话题也会更容易养成习惯。
我们也可以根据实用性来选择论文。例如,我们可能需要快速理解一个项目的域。在开始一个项目之前,我几乎总是留出时间进行文献综述。花几天时间研究论文可以节省几周甚至几个月的死胡同和不必要的重新发明轮子。
建议也是确定要阅读的有用论文的方便方法。一个黑客是在社交媒体上关注我们崇拜的人,或者订阅精心策划的时事通讯--我发现这些来源的信息噪声比很高。
我读什么报纸?出于实用性,我读的多是与工作有关的论文。这使我能够立即应用我所读到的知识,从而加强我的学习。在工作之外,我对序列感兴趣,并倾向于阅读强化学习。我特别喜欢分享什么有效什么无效的论文,比如通过消融研究。这包括关于Word2VEC、BERT和T5的论文。
在谷歌搜索“如何阅读论文”会返回无数有用的结果。但如果你觉得它势不可挡,这里有几个我发现很有帮助的:
我的方法类似于三遍法。在下面的例子中,我将分享我是如何阅读几篇recsys的论文来了解新颖性、多样性和偶然性的度量标准的。等等。
在第一遍中,我扫描摘要以了解论文是否有我需要的内容,如果有,我浏览标题以确定问题陈述、方法和结果。在这个例子中,我专门寻找如何计算各种度量的公式。我给我的单子上的所有文件一个第一关(并拒绝开始第二关,直到我完成了单子)。在本例中,大约一半的论文进行了第二次传递。
在第二遍中,我再次阅读每一篇论文,并突出显示相关章节。这有助于我在以后参考论文时迅速发现重要的部分。然后,我为每篇论文做笔记。在本例中,注释主要围绕度量(即,方法、公式)。如果是一个应用程序的文献综述(例如,recsys、产品分类、欺诈检测),说明将侧重于方法、系统设计和结果。
对于大多数论文来说,第二次通过就足够了。我已经捕获了关键信息,如果需要,可以在未来参考它。尽管如此,如果我读论文作为文献综述的一部分,或者如果我想巩固我的知识,我有时会做第三步。
阅读只为心灵提供知识材料;是思考使我们读到的东西成为我们的。
-约翰·洛克
在第三关中,我将论文中常见的概念综合成自己的注释。各种论文都有自己的方法来衡量新颖性、多样性、偶然性等,我把它们合并成一个音符,并比较它们的利弊。在这样做的时候,我经常发现笔记和知识中的空白,不得不重温原始论文。
最后,如果我认为它对其他人有用,我会写出我所学到的并在网上发布。相对于从头开始,有我的笔记作为参考让写作容易得多。这导致了诸如:
在深入你的下一个项目之前,花一两天时间浏览几篇相关的论文。我相信从中长期来看,这将为您节省时间和精力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25