
我已经在iZettle工作了大约四年了。我在这家公司的旅程并不是以机器学习工程师的身份开始的,而是随着我在公司的成长而过渡到机器学习工程师。
我的正规教育是计算机科学/软件工程,事实上我已经做了大约8年的软件开发人员。作为一名软件工程师,这些年给了我一些技能,这些技能使我走向ML工程的道路变得相当特别。我想和大家分享我希望在准备这个角色时能更多地关注什么,以及我认为我的背景如何帮助我完成这个转变。
首先-为什么?我对我的软件工程师工作不满意吗?我认为做一名ML工程师比做一名软件工程师更好吗?绝不是!这只是我喜欢花什么时间的问题,那就是数据。我从15岁就开始编码了,我一直很喜欢它。但我最喜欢的是用我的作品去了解世界。作为许多人,我有许多“宠物项目”想法永远不会出现,但当我阅读这份想法清单时,我发现了这样的事情:构建工具来使用推特数据来检测自然灾害,分析我的社交媒体账户数据来理解我自己的行为,检测朋友聊天中的情绪,等等。你看到模式了吗?所有这些项目想法都寻求对某些情况的理解,并且都以数据为中心。那时我一直对数据很感兴趣,大约两年前我决定把它作为我的主要工作。我想认为机器学习是我个人的选择,但本着数据驱动的精神,我可以将我的决定与近年来机器学习领域的炒作联系起来,当时你读到的每一篇科技文章都是关于ML创新的,所以我想我永远不会知道。
不管怎样,我做出了这个决定,对我来说幸运的是,iZettle正在运行一个机器学习指导项目,我很高兴地加入了这个项目。
在这个指导程序中,我们学习了bookPython机器学习的所有章节。每周,我们会讨论一章,编写一些练习来实验所学的概念。我发现它非常令人兴奋,它确实奠定了我对机器学习如何工作的基本理解。
除此之外,我利用空闲时间参加了一些在线课程,比如Udacity中的aDeep Learning Specialisation,参加inKagglecompetitions(我不得不承认,没有太大成功),并试图实施我之前提到的一些项目。
我告诉你们所有这些不是为了吹牛,而是为了让你们明白我正在尽可能多地吸收关于这个主题的知识,当我准备更换标题时,我觉得我对机器学习有非常扎实的理解。
经过6个多月的紧张学习,我加入了iZettle的机器学习团队。
我充满活力地加入了这个团队,渴望开始我的第一个项目。从第一个项目开始,我开始注意到学习机器学习和实际做机器学习是多么的不同。第一个项目是试图为我们的商人预测破产,这样我们就可以伸出援手,帮助他们做生意。
当你做一个来自一门课程或一本书的项目时,该项目最重要的部分已经为你完成了。也就是说:您到底想做什么?在课程中,您会得到一个数据集和一个目标度量,您所要做的就是“按摩”您的数据和训练模型,以便在您的目标度量上获得良好的性能。
在这种情况下,有几件事你没有学到,甚至从来没有质疑过:
问题定义:如何将问题公式化,以便从机器学习的角度来看它是有意义的?对于破产问题,我感到震惊的是,我的脑海中突然冒出了多少问题,几乎是不知从哪里冒出来的:预测破产意味着什么?是不是意味着一个商人明天就要破产了?一周后?一个月后?我怎么知道我们哪一个商户已经破产了?是缺乏活动吗?那么季节性呢?是一些外部信息吗?我如何将它映射到一个标签,让我的算法可以从中学习?…我太习惯于被赋予一个有标签的数据集,以至于我从未考虑过仅仅创建这个标签需要大量的思考、领域知识和业务考虑。这取决于您如何定义标签,您可以使用的问题和功能完全改变。
data:我已经暗示了接下来会发生什么,而且众所周知,获取正确的数据是ML问题的一个困难部分。然而,当你第一次偶然发现这个问题时,它仍然会打击你。数据很难得到,而且很杂乱,不应该盲目相信。构建标签实际上是在获得数据源之后。在我的第一个任务中,我有两个来自不同来源的数据集,我必须合并并映射到每个商家自己的特性集。对于您引入的每一个新的信息源,您不仅需要确保数据质量是可接受的,而且要确保您没有引入任何偏见,或者至少您对此做出了解释。
在某些情况下,你甚至没有你想要解决的问题的数据,机器学习在任何一行代码之前几个月就开始了,建立数据收集策略和与其他团队的关系。
评估:我们有数据集和标签。我们开始建模…我们如何衡量性能?这不仅是使用哪种度量的问题,而且是它是否有业务意义的问题。权衡在这里起着很大的作用。我以前从来没有考虑过用什么指标来衡量我的模型的性能,这是给定的。我真的在等别人告诉我:使用精确度/ROC-AUC/等。当这种情况没有发生时,我不得不考虑一个指标及其含义,我意识到花很多时间思考这个问题有多重要,我对我所学的任何一本书或课程都很少关注这个话题感到失望。只要想一想:根据当它实际上是假的(即假阳性)或任何类似的变化时预测真的“糟糕”程度,您可能希望保持最低的精确度或召回率,而不管您的一般度量(如ROC-AUC)如何上升或下降。这只是一个例子,还有很多。
这些是我意识到在我所学的任何课程或阅读的任何书籍中都没有学到的要点。这些都是我在工作中日复一日学到的东西,感谢真正有经验和耐心的同事。
当然,也有一些意想不到的好的部分,在这些部分中,我可以利用我作为一名软件工程师多年来获得的技能。列举一些:
如果您的情况与我类似,我有以下附加练习,用于您正在阅读的书或您正在学习的课程中的下一个练习。尝试回答以下问题:
我相信,如果你真的试图回答所有这些问题,你在学习过程中遇到的每一个练习,你会在“现实生活中”发展出一个更广泛和现实的机器学习观点。
我希望这个帖子对很多人的学习之旅有所帮助!如果你有任何问题,请联系我们,或者想与我们分享你的故事,我们很乐意听到它!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16