京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Frederik Bussler,显然AI的增长营销主管
我经常分享学习人工智能和数据科学的资源,无论是谷歌或哈佛的课程,还是YouTube的全长教程。
与此同时,我听到了这样的担忧:“现在学习AI和数据科学还来得及吗?”
令人担忧的是,随着数百万学生学习机器学习,该领域正变得饱和。毕竟,人工智能的工作数量有限,尤其是在全球经济衰退期间。
吴恩达在Coursera上的著名机器学习课程有接近400万学生。
在写这篇文章的时候,如果你在LinkedIn上搜索“机器学习”,你会发现超过10万个工作岗位。
显然,学生人数远远多于公开职位--仅从一门Coursera课程的学生人数来看,这一比例几乎为40:1。
尽管如此,学习人工智能仍然是值得的,原因有很多。
首先,让我们谈谈内部创业。人工智能的构建和部署变得比以往任何时候都更容易、更快--尤其是考虑到类似的无代码人工智能工具。人工智能--这意味着员工可以通过将人工智能添加到他们的技能中来增加更多的价值。
这些内部创业者在他们的组织中发现人工智能用例并没有增加LinkedIn上的空缺职位数量,但有无数的例子。
任何员工都有一个巨大的动力去成为一名人工智能内部设计师:将他们工作中重复、枯燥的部分自动化,并专注于创造性的、以人为中心的任务。更不用说,AI技能可以提振你的薪水和事业。
例如,营销人员可以使用人工智能来预测客户行为,构建人物角色,并识别顶级人口统计数据。零售员工可以优化分类,预测库存消耗,预测人员需求,等等。保险员工可以使用人工智能来预测保险索赔、诉讼风险、代位求偿机会等。
人工智能内部创业的可能性是无穷无尽的。
还有一个巨大的机会领域没有包含在大约10万个机器学习工作中:创业。
企业家精神是内部创业风险更高的另一面。这意味着走自己的路,寻找新的方法在市场上增加价值,往往没有任何支持、支持或稳定。
同时,这种高风险伴随着高回报的潜力。
假设你作为第30名员工加入了一家硅谷初创公司(还很早),你是你所在领域的顶尖工程师之一。根据Holloway的说法,你可以预期0.25%-0.5%的股权。
如果你独自创业,作为一个单独的创始人,你有100%的股权可以开始。通过引入自己的联合创始人、员工和投资者,这一数字将会减少,但还有更多的潜力。
即使你对内部创业、创业或找到一个新角色不感兴趣,也有必要不断学习。
人工智能现在遍布每个行业,从你在亚马逊、Spotify、Netflix或Tinder上获得的建议,到你在谷歌或YouTube上看到的搜索结果,甚至到新冠肺炎跟踪、疫苗开发和疫苗推出。
为了了解最新技术,真正了解当今世界,学习人工智能是必须的。
学习AI是值得的,而且永远都是。即使就业市场已经饱和(现在还没有饱和,因为有资格的人仍然有工作机会),创造性的内部创业者和企业家总是有潜力的。为了保持相关性,AI技能正迅速成为必备技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07