机器学习中,我们最常遇到的就是无监督,有监督,半监督了。无监督和有监督的区别,小编之前跟大家分享过,今天跟大家分享的是无监督机器学习中常见的聚类算法,希望对大家无监督学习有所帮助。 一、基本概念 ...
2020-07-24
把近朱者赤,近墨者黑这一思想运用到机器学习中会产生什么?当然是KNN最邻近算法啦!KNN(全称K-Nearest Neighbor)最邻近分类算法是数据挖掘分类算法中最简单的算法之一,白话解释一下就是:由你的邻居来推断出你的类 ...
2020-07-24
在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。 机械原因,也就是由于例如,数据存储失败,存储器损坏 ...
2020-07-24
在文本分类,垃圾邮件过滤的场景中,我们经常会用到的是朴素贝叶斯算法,今天小编就具体给大家介绍一下朴素贝叶斯算法 一、朴素贝叶斯算法简介 1.朴素贝叶斯算法概念 朴素贝叶斯法是基于贝叶斯定理与特征 ...
2020-07-24
线性回归我们都很熟悉了,是有监督学习中最为简单的一种回归方式,小编今天就进一步跟大家分享一下多元线性回归。 一、什么是多元线性回归 在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。线 ...
2020-07-24
前面小编给大家简单介绍过损失函数,今天给大家继续分享交叉熵损失函数,直接来看干货吧。 一、交叉熵损失函数概念 交叉熵损失函数CrossEntropy Loss,是分类问题中经常使用的一种损失函数。公式为: ...
2020-07-24
机器学习主要分为:有监督学习,无监督学习,以及半监督学习等。小编今天给大家分享的主要是有监督学习和无监督学习的比较,希望对于大家机器学习有所帮助。 一、首先来了解一下有监督学习和无监督学习的概念 ...
2020-07-23
前面小编在介绍FP-Growth算法时,提到了Apriori算法,其实FP-Growth是基于Apriori的,今天小编就具体给大家介绍一下Apriori算法。 一、什么是Apriori算法 Apriori算法是一种最有影响的挖掘数据关联规则频繁 ...
2020-07-23
最近小编了解到了一个的概念:FP-growth,废话就不多说了,直接把整理的FP-growth的干货分享给大家。 一、FP-growth是什么 FP-Growth(频繁模式增长)算法是由韩家炜老师在2000年提出的关联分析算法,它的分治 ...
2020-07-23python语言中包含各种符号,我们平常使用python写代码的时候一定要注意,必须要弄明白每种符号所代表的含义以及相应的使用方法。分号“;”就是python中常见的一种符号,大家知道它的具体用法是什么吗?别着急,下面 ...
2020-07-23最近可是被python给刷屏了,到处都是python的广告,推广,这也让越来越多的人开始学python。想要学习和使用python,必须对python的基础知识有一个比较全面的了解。小编今天跟大家分享的这篇文章就是关于python的sh ...
2020-07-23现在python学习可是潮流,相信很多小伙伴目前都在学习或者正准备学习python的路上。虽然说python语言相对比较简单,上手很容易,但是对于一些零基础的小白来说还是比较难的,在学习过程中会遇到各种各样的问题。小 ...
2020-07-23导读:光看标题,你可能会以为今天会聊一个休闲的话题,不不,今天我们将要认真聊的,是一个严肃的软件工程话题:自动化测试。具体来说,是手机游戏的自动化测试。不是别家的游戏,正是腾讯游戏,保证半点也没有标 ...
2020-07-23导读:深度学习已经存在了几十年,不同的结构和架构针对不同的用例而进行演变。其中一些是基于我们对大脑的想法,另一些是基于大脑的实际工作。本文将简单介绍几个业界目前使用的先进的架构。 作者:谢林·托马 ...
2020-07-23
在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和 ...
2020-07-23
对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合 ...
2020-07-23
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。 一、首先来回顾一下什么是泛化能力 泛化能力(generalization ability),百科给出的定义是:机器 ...
2020-07-23文章来源:接地气学堂 作者:接地气的陈老师 “推动业务”是数据人最怕的词了。妈耶,还推动业务呢,我自己不被业务部门天天追着屁股要数就不错了,咋个推动法。可领导们最喜欢提这种要求。今天我们就 ...
2020-07-23我们都知道python是一中功能强大,易上手的计算机编程语言,应用范围很是广泛。我们平时可以使用python进行数据统计,报表制作等,有时候也会遇到内容识别的场景,需要将汉字转换成拼音。今天小编跟大家分享的这篇 ...
2020-07-22
Keras是源于 Theano 或 者TensorFlow 的一个深度学习框架,它的设计来源于Torch,编程语言使用的是 Python ,是一个拥有强大功能、内容抽象,而且高度模块化的神经网络库。 今天小编给大家分享的就是Keras模型 ...
2020-07-22在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06