
在文本分类,垃圾邮件过滤的场景中,我们经常会用到的是朴素贝叶斯算法,今天小编就具体给大家介绍一下朴素贝叶斯算法
一、朴素贝叶斯算法简介
1.朴素贝叶斯算法概念
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
2.朴素贝叶斯算法优缺点
优点:
(1)朴素贝叶斯模型发源于古典数学理论,分类效率比较稳定。
(2)对小规模的数据表现很好,能够用于多分类任务的处理,适合增量式训练,尤其是在数据量超出内存的情况下,能够一批批的去增量训练。
(3)算法简单,对缺失数据不太敏感。
缺点:
(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间是相互独立的,而这个假设在实际应用中往往并不成立的。虽然在属性相关性较小时,朴素贝叶斯性能良好。但是,在属性个数比较多或者属性之间相关性较大时,分类效果并不好。
(2)需要知道先验概率,并且先验概率在很多时候多是取决于假设,假设的模型可以有多种,从而导致在某些时候会由于假设的先验模型而使得预测效果不佳。
(3)因为是通过先验和数据来决定后验的概率来决定分类的,所以分类决策存在一定的错误率。
(4)对输入数据的表达形式很敏感。
二、贝叶斯定理
既然,朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。那么接下来我们就来了解一下贝叶斯定理。
贝叶斯算法是英国数学家贝叶斯(约1701-1761)Thomas Bayes,生前提出为解决“逆概”问题而提出的。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在 B 发生的条件下 A 发生的概率”。
联合概率表示两个事件共同发生(数学概念上的交集)的概率。A 与 B 的联合概率表示为
推导:
从条件概率的定义推导出贝叶斯定理。
根据条件概率的定义,在事件 B 发生的条件下事件 A 发生的概率为:
同样道理,在事件 A 发生的条件下事件 B 发生的概率为:
结合这两个方程式,能够得到:
这个引理有时称作概率乘法规则。上式两边同除以 P(A),若P(A)是非零的,就能得到贝叶斯定理:
# 文本分类器 import numpy as np # 数据样本 def loadDataSet(): # dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], # # ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], # # ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'hime'], # # ['stop', 'posting', 'stupid', 'worthless', 'garbage'], # # ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], # # ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] dataset = [['玩', '游', '戏', '吧'], ['玩', 'lol', '吧'], ['我', '要', '学', '习'], ['学', '习', '使', '我', '快', '了'], ['学', '习', '万', '岁'], ['我', '要', '玩', '耍']] label = [1, 1, 0, 0, 0, 1] return dataset, label # 获取文档中出现的不重复词表 def createVocabList(dataset): vocaset = set([]) # 用集合结构得到不重复词表 for document in dataset: vocaset = vocaset | set(document) # 两个集合的并集 return list(vocaset) def setword(listvocaset, inputSet): newVocaset = [0] * len(listvocaset) for data in inputSet: if data in listvocaset: newVocaset[listvocaset.index(data)] = 1 # 如果文档中的单词在列表中,则列表对应索引元素变为1 return newVocaset def train(listnewVocaset, label): label = np.array(label) numDocument = len(listnewVocaset) # 样本总数 numWord = len(listnewVocaset[0]) # 词表的大小 pInsult = np.sum(label) / float(numDocument) p0num = np.ones(numWord) # 非侮辱词汇 p1num = np.ones(numWord) # 侮辱词汇 p0Denom = 2.0 # 拉普拉斯平滑 p1Denom = 2.0 for i in range(numDocument): if label[i] == 1: p1num += listnewVocaset[i] p1Denom += 1 else: p0num += listnewVocaset[i] p0Denom += 1 # 取对数是为了防止因为小数连乘而造成向下溢出 p0 = np.log(p0num / p0Denom) # 属于非侮辱性文档的概率 p1 = np.log(p1num / p1Denom) # 属于侮辱性文档的概率 return p0, p1, pInsult # 分类函数 def classiyyNB(Inputdata, p0, p1, pInsult): # 因为取对数,因此连乘操作就变成了连续相加 p0vec = np.sum(Inputdata * p0) + np.log(pInsult) p1vec = np.sum(Inputdata * p1) + np.log(1.0 - pInsult) if p0vec > p1vec: return 0 else: return 1 def testingNB(): dataset, label = loadDataSet() voast = createVocabList(dataset) listnewVocaset = [] for listvocaset in dataset: listnewVocaset.append(setword(voast, listvocaset)) p0, p1, pInsult = train(listnewVocaset, label) Inputdata = ['玩', '一', '玩'] Inputdata = np.array(Inputdata) Inputdata = setword(voast, Inputdata) print("这句话对应的分类是:") print(classiyyNB(Inputdata, p0, p1, pInsult)) testingNB()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02