京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在文本分类,垃圾邮件过滤的场景中,我们经常会用到的是朴素贝叶斯算法,今天小编就具体给大家介绍一下朴素贝叶斯算法
一、朴素贝叶斯算法简介
1.朴素贝叶斯算法概念
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
2.朴素贝叶斯算法优缺点
优点:
(1)朴素贝叶斯模型发源于古典数学理论,分类效率比较稳定。
(2)对小规模的数据表现很好,能够用于多分类任务的处理,适合增量式训练,尤其是在数据量超出内存的情况下,能够一批批的去增量训练。
(3)算法简单,对缺失数据不太敏感。
缺点:
(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间是相互独立的,而这个假设在实际应用中往往并不成立的。虽然在属性相关性较小时,朴素贝叶斯性能良好。但是,在属性个数比较多或者属性之间相关性较大时,分类效果并不好。
(2)需要知道先验概率,并且先验概率在很多时候多是取决于假设,假设的模型可以有多种,从而导致在某些时候会由于假设的先验模型而使得预测效果不佳。
(3)因为是通过先验和数据来决定后验的概率来决定分类的,所以分类决策存在一定的错误率。
(4)对输入数据的表达形式很敏感。
二、贝叶斯定理
既然,朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。那么接下来我们就来了解一下贝叶斯定理。
贝叶斯算法是英国数学家贝叶斯(约1701-1761)Thomas Bayes,生前提出为解决“逆概”问题而提出的。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在 B 发生的条件下 A 发生的概率”。
联合概率表示两个事件共同发生(数学概念上的交集)的概率。A 与 B 的联合概率表示为
推导:
从条件概率的定义推导出贝叶斯定理。
根据条件概率的定义,在事件 B 发生的条件下事件 A 发生的概率为:
同样道理,在事件 A 发生的条件下事件 B 发生的概率为:
结合这两个方程式,能够得到:
这个引理有时称作概率乘法规则。上式两边同除以 P(A),若P(A)是非零的,就能得到贝叶斯定理:
# 文本分类器 import numpy as np # 数据样本 def loadDataSet(): # dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], # # ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], # # ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'hime'], # # ['stop', 'posting', 'stupid', 'worthless', 'garbage'], # # ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], # # ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] dataset = [['玩', '游', '戏', '吧'], ['玩', 'lol', '吧'], ['我', '要', '学', '习'], ['学', '习', '使', '我', '快', '了'], ['学', '习', '万', '岁'], ['我', '要', '玩', '耍']] label = [1, 1, 0, 0, 0, 1] return dataset, label # 获取文档中出现的不重复词表 def createVocabList(dataset): vocaset = set([]) # 用集合结构得到不重复词表 for document in dataset: vocaset = vocaset | set(document) # 两个集合的并集 return list(vocaset) def setword(listvocaset, inputSet): newVocaset = [0] * len(listvocaset) for data in inputSet: if data in listvocaset: newVocaset[listvocaset.index(data)] = 1 # 如果文档中的单词在列表中,则列表对应索引元素变为1 return newVocaset def train(listnewVocaset, label): label = np.array(label) numDocument = len(listnewVocaset) # 样本总数 numWord = len(listnewVocaset[0]) # 词表的大小 pInsult = np.sum(label) / float(numDocument) p0num = np.ones(numWord) # 非侮辱词汇 p1num = np.ones(numWord) # 侮辱词汇 p0Denom = 2.0 # 拉普拉斯平滑 p1Denom = 2.0 for i in range(numDocument): if label[i] == 1: p1num += listnewVocaset[i] p1Denom += 1 else: p0num += listnewVocaset[i] p0Denom += 1 # 取对数是为了防止因为小数连乘而造成向下溢出 p0 = np.log(p0num / p0Denom) # 属于非侮辱性文档的概率 p1 = np.log(p1num / p1Denom) # 属于侮辱性文档的概率 return p0, p1, pInsult # 分类函数 def classiyyNB(Inputdata, p0, p1, pInsult): # 因为取对数,因此连乘操作就变成了连续相加 p0vec = np.sum(Inputdata * p0) + np.log(pInsult) p1vec = np.sum(Inputdata * p1) + np.log(1.0 - pInsult) if p0vec > p1vec: return 0 else: return 1 def testingNB(): dataset, label = loadDataSet() voast = createVocabList(dataset) listnewVocaset = [] for listvocaset in dataset: listnewVocaset.append(setword(voast, listvocaset)) p0, p1, pInsult = train(listnewVocaset, label) Inputdata = ['玩', '一', '玩'] Inputdata = np.array(Inputdata) Inputdata = setword(voast, Inputdata) print("这句话对应的分类是:") print(classiyyNB(Inputdata, p0, p1, pInsult)) testingNB()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28