
在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和‘真’模型一样,所以最终网络模型会因为复杂度太高而产生过拟合。今天小编就给大家整理了过拟合产生的原因及一些相应的解决方法,希望对大家机器学习中解决过拟合问题有所帮助。
一、什么是过拟合
过拟合定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。
过拟合(overfiting / high variance)表现为:模型在训练集上表现很好,但是在测试集上表现较差。也就是说模型的泛化能力弱。
简单理解过拟合,就是模型对训练数据的信息提取过多,不仅学习到了数据背后的规律,连数据噪声都当做规律学习了。
对比欠拟合理解起来会更容易:
二、过拟合产生原因
三、过拟合处理办法
1、重新清洗数据,过拟合出现也有可能是数据不纯,这种情况下我们需要重新清洗数据。
2、数据增强,也就是获取和使用更多的数据集。给与模型足够多的数据集,让它在尽可能多的数据上进行“观察”和拟合,从而进行不断修正。但是需要注意的是,我们是不可能收集无限多的数据集的,所以通常的方法,就是对已有的数据进行,添加大量的“噪音”,或者对图像进行锐化、对旋转、明暗度进行调整等。
3、采用正则化方法。加入正则化项就是在原来目标函数的基础上加入了约束。常用的正则化项有L1.L2.当目标函数的等高线和L1.L2正则化损失函数第一次相交时,得到最优解。
L1正则化项约束后的解空间为多边形,这些多边形的角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。
L2正则化项约束后的解空间为圆形,图像上的棱角圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,参数不断趋向于0.最后得到的就是很小的参数。
4、采用dropout方法。
运用了dropout方法,就相当于训练了非常多的,仅仅只有部分隐层单元的神经网络,每一个这种半数网络,都能够给出一个分类结果,这些结果中,有正确的,也有错误的。随着训练的进行,大多数半数网络都能给出正确的分类结果。这样一来,那些少数的错误分类结果对于最终结果就不会哦造成大的影响。而且dropout通过减少神经元之间复杂的共适应关系,从而也提高了模型的泛化能力。
5、提前结束训练
也就是early stopping,在模型迭代训练时,对训练精度(损失)和验证精度(损失)进行记录,如果模型训练的效果不能够再提高,例如训练误差一直降低,但是验证误差却不再降低甚至上升的情况,我们可以采用结束模型训练的方法。
6、集成学习
集成学习算法也可以有效的减轻过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。Boosting不仅能够减小偏差,还能减小方差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27