
Keras 是源于 Theano 或 者TensorFlow 的一个深度学习框架,它的设计来源于Torch,编程语言使用的是 Python ,是一个拥有强大功能、内容抽象,而且高度模块化的神经网络库。
今天小编给大家分享的就是Keras 模型的保存与加载,希望对大家学习和使用Keras 有所帮助。
一、Keras模型保存和加载的基础介绍
Keras模型保存和加载一般是保存成hdf5格式。Keras模型主要有两种,序贯模型即Sequential、以及函数式模型Model,相对来说函数模型Model使用范围更广,序贯模型Sequential可看作是函数模型的一种特殊情况。
两类模型有一些方法是相同的:
model.summary():打印模型概况
model.get_config():返回包含模型配置信息的Python字典。
model.get_layer():依据层名或下标获得层对象
model.get_weights():返回模型权重张量的列表,类型为numpy array
model.set_weights():从numpy array里将权重载入给模型,要求数组具有与model.get_weights()相同的形状。
model.to_json:返回代表模型的JSON字符串,仅包含网络结构,不包含权值。
model.to_yaml:与model.to_json类似,同样可以从产生的YAML字符串中重构模型
model.save_weights(filepath):将模型权重保存到指定路径,文件类型是HDF5(后缀是.h5)
model.load_weights(filepath, by_name=False):从HDF5文件中加载权重到当前模型中, 默认情况下模型的结构将保持不变。如果想将权重载入不同的模型(有些层相同)中,则设置by_name=True,只有名字匹配的层才会载入权重
二、Keras模型保存和加载方式
1.保存所有状态
(1)保存模型和模型图
# 保存模型 model.save(file_path) model_name = '{}/{}_{}_{}_v2.h5'.format(params['model_dir'],params['filters'],params['pool_size_1'],params['pool_size_2']) model.save(model_name) # 保存模型图 from keras.utils import plot_model # 需要安装pip install pydot model_plot = '{}/{}_{}_{}_v2.png'.format(params['model_dir'],params['filters'],params['pool_size_1'],params['pool_size_2']) plot_model(model, to_file=model_plot)
(2)加载模型
from keras.models import load_model model_path = '../docs/keras/100_2_3_v2.h5' model = load_model(model_path)
利弊分析:
a.模型保存和加载就只需一行代码,写起来简单快捷
b.既能保存模型的结构和参数,又能保存训练配置等信息。方便我们从上次训练中断的地方再次进行训练优化。
c.占用空间过大,上传或者同步费时。
2.只保存模型结构和模型参数
(1)保存模型
import yaml import json # 保存模型结构到yaml文件或者json文件 yaml_string = model.to_yaml() open('../docs/keras/model_architecture.yaml', 'w').write(yaml_string) # json_string = model.to_json() # open('../docs/keras/model_architecture.json', 'w').write(json_string) # 保存模型参数到h5文件 model.save_weights('../docs/keras/model_weights.h5')
(2)加载模型
import yaml import json from keras.models import model_from_json from keras.models import model_from_yaml # 加载模型结构 model = model_from_yaml(open('../docs/keras/model_architecture.yaml').read()) # model = model_from_json(open('../docs/keras/model_architecture.json').read()) # 加载模型参数 model.load_weights('../docs/keras/model_weights.h5')
利弊分析:
a.能够节省硬盘空间,便于同步和协作
b.会丢失训练的一部分配置信息
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27