京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面小编在介绍FP-Growth算法时,提到了Apriori算法,其实FP-Growth是基于Apriori的,今天小编就具体给大家介绍一下Apriori算法。
一、什么是Apriori算法
Apriori算法是一种最有影响的挖掘数据关联规则频繁项集的算法,能够发现事物数据库中频繁出现的数据集,通过这些联系构成的规则,能够帮助用户找出某些行为特征,从而帮助企业进行决策。
Apriori算法基于这样的事实:算法使用频繁项集性质的先验知识。Apriori使用一种称作逐层搜索的迭代方法,k-项集用于探索(k+1)-项集。首先,找出频繁1-项集的集合。该集合记作L1.L1用于找频繁2-项集的集合L2.而L2用于找L3.如此下去,直到不能找到频繁k-项集。找每个Lk需要一次数据库扫描。
算法原始数据如下:
算法的基本过程如下图:
二、Apriori算法原理
1.扫描数据集,得到所有出现过的数据,作为候选1项集。
2.挖掘频繁k项集。
3.扫描计算候选k项集的支持度。
4.剪枝去掉候选k项集中支持度低于最小支持度α的数据集,得到频繁k项集。如果频繁k项集为空,则返回频繁k-1项集的集合作为算法结果,算法结束。如果得到的频繁k项集只有一项,则直接返回频繁k项集的集合作为算法结果,算法结束。
5.基于频繁k项集,连接生成候选k+1项集。
6.利用步骤2.迭代得到k=k+1项集结果。
三、Apriori算法利弊分析
1.利:
适合于稀疏数据集。
算法原理简单,很容易实现。
适合事务数据库的关联规则挖掘。
2.弊
有可能产生庞大的候选集。
算法需多次遍历数据集,效率比较低,而且耗时。
三、算法实现
假如有项目集合I={1,2,3,4,5},有事务集T:
1,2,3 1,2,4 1,3,4 1,2,3,5 1,3,5 2,4,5 1,2,3,4
设定minsup=3/7,misconf=5/7。
*Apriori算法 2012.10.31*/ #include <iostream> #include <vector> #include <map> #include <string> #include <algorithm> #include <cmath> using namespace std; vector<string> T; //保存初始输入的事务集 double minSup,minConf; //用户设定的最小支持度和置信度 map<string,int> mp; //保存项目集中每个元素在事务集中出现的次数 vector< vector<string> > F; //存放频繁项目集 vector<string> R; //存放关联规则 void initTransactionSet() //获取事务集 { int n; cout<<"请输入事务集的个数:"<<endl; cin>>n; getchar(); cout<<"请输入事务集:"<<endl; while(n--) { string str; getline(cin,str); //输入的事务集中每个元素以空格隔开,并且只能输入数字 T.push_back(str); } cout<<"请输入最小支持度和置信度:"<<endl; //支持度和置信度为小数表示形式 cin>>minSup>>minConf; } vector<string> split(string str,char ch) { vector<string> v; int i,j; i=0; while(i<str.size()) { if(str[i]==ch) i++; else { j=i; while(j<str.size()) { if(str[j]!=ch) j++; else break; } string temp=str.substr(i,j-i); v.push_back(temp); i=j+1; } } return v; } void genarateOneFrequenceSet() //生成1-频繁项目集 { int i,j; vector<string> f; //存储1-频繁项目集 for(i=0;i<T.size();i++) { string t = T[i]; vector<string> v=split(t,' '); //将输入的事务集进行切分,如输入1 2 3,切分得到"1","2","3" for(j=0;j<v.size();j++) //统计每个元素出现的次数,注意map默认按照key的升序排序 { mp[v[j]]++; } } for(map<string,int>::iterator it=mp.begin();it!=mp.end();it++) //剔除不满足最小支持度要求的项集 { if( (*it).second >= minSup*T.size()) { f.push_back((*it).first); } } F.push_back(T); //方便用F[1]表示1-频繁项目集 if(f.size()!=0) { F.push_back(f); } } bool judgeItem(vector<string> v1,vector<string> v2) //判断v1和v2是否只有最后一项不同 { int i,j; i=0; j=0; while(i<v1.size()-1&&j<v2.size()-1) { if(v1[i]!=v2[j]) return false; i++; j++; } return true; } bool judgeSubset(vector<string> v,vector<string> f) //判断v的所有k-1子集是否在f中 { int i,j; bool flag=true; for(i=0;i<v.size();i++) { string str; for(j=0;j<v.size();j++) { if(j!=i) str+=v[j]+" "; } str=str.substr(0,str.size()-1); vector<string>::iterator it=find(f.begin(),f.end(),str); if(it==f.end()) flag=false; } return flag; } int calculateSupportCount(vector<string> v) //计算支持度计数 { int i,j; int count=0; for(i=0;i<T.size();i++) { vector<string> t=split(T[i],' '); for(j=0;j<v.size();j++) { vector<string>::iterator it=find(t.begin(),t.end(),v[j]); if(it==t.end()) break; } if(j==v.size()) count++; } return count; } bool judgeSupport(vector<string> v) //判断一个项集的支持度是否满足要求 { int count=calculateSupportCount(v); if(count >= ceil(minSup*T.size())) return true; return false; } void generateKFrequenceSet() //生成k-频繁项目集 { int k; for(k=2;k<=mp.size();k++) { if(F.size()< k) //如果Fk-1为空,则退出 break; else //根据Fk-1生成Ck候选项集 { int i,j; vector<string> c; vector<string> f=F[k-1]; for(i=0;i<f.size()-1;i++) { vector<string> v1=split(f[i],' '); for(j=i+1;j<f.size();j++) { vector<string> v2=split(f[j],' '); if(judgeItem(v1,v2)) //如果v1和v2只有最后一项不同,则进行连接 { vector<string> tempVector=v1; tempVector.push_back(v2[v2.size()-1]); sort(tempVector.begin(),tempVector.end()); //对元素排序,方便判断是否进行连接 //剪枝的过程 //判断 v1的(k-1)的子集是否都在Fk-1中以及是否满足最低支持度 if(judgeSubset(tempVector,f)&&judgeSupport(tempVector)) { int p; string tempStr; for(p=0;p<tempVector.size()-1;p++) tempStr+=tempVector[p]+" "; tempStr+=tempVector[p]; c.push_back(tempStr); } } } } if(c.size()!=0) F.push_back(c); } } } vector<string> removeItemFromSet(vector<string> v1,vector<string> v2) //从v1中剔除v2 { int i; vector<string> result=v1; for(i=0;i<v2.size();i++) { vector<string>::iterator it= find(result.begin(),result.end(),v2[i]); if(it!=result.end()) result.erase(it); } return result; } string getStr(vector<string> v1,vector<string> v2) //根据前件和后件得到规则 { int i; string rStr; for(i=0;i<v1.size();i++) rStr+=v1[i]+" "; rStr=rStr.substr(0,rStr.size()-1); rStr+="->"; for(i=0;i<v2.size();i++) rStr+=v2[i]+" "; rStr=rStr.substr(0,rStr.size()-1); return rStr; } void ap_generateRules(string fs) { int i,j,k; vector<string> v=split(fs,' '); vector<string> h; vector< vector<string> > H; //存放所有的后件 int fCount=calculateSupportCount(v); //f的支持度计数 for(i=0;i<v.size();i++) //先生成1-后件关联规则 { vector<string> temp=v; temp.erase(temp.begin()+i); int aCount=calculateSupportCount(temp); if( fCount >= ceil(aCount*minConf)) //如果满足置信度要求 { h.push_back(v[i]); string tempStr; for(j=0;j<v.size();j++) { if(j!=i) tempStr+=v[j]+" "; } tempStr=tempStr.substr(0,tempStr.size()-1); tempStr+="->"+v[i]; R.push_back((tempStr)); } } H.push_back(v); if(h.size()!=0) H.push_back(h); for(k=2;k<v.size();k++) //生成k-后件关联规则 { h=H[k-1]; vector<string> addH; for(i=0;i<h.size()-1;i++) { vector<string> v1=split(h[i],' '); for(j=i+1;j<h.size();j++) { vector<string> v2=split(h[j],' '); if(judgeItem(v1,v2)) { vector<string> tempVector=v1; tempVector.push_back(v2[v2.size()-1]); //得到后件集合 sort(tempVector.begin(),tempVector.end()); vector<string> filterV=removeItemFromSet(v,tempVector); //得到前件集合 int aCount=calculateSupportCount(filterV); //计算前件支持度计数 if(fCount >= ceil(aCount*minConf)) //如果满足置信度要求 { string rStr=getStr(filterV,tempVector); //根据前件和后件得到规则 string hStr; for(int s=0;s<tempVector.size();s++) hStr+=tempVector[s]+" "; hStr=hStr.substr(0,hStr.size()-1); addH.push_back(hStr); //得到一个新的后件集合 R.push_back(rStr); } } } } if(addH.size()!=0) //将所有的k-后件集合加入到H中 H.push_back(addH); } } void generateRules() //生成关联规则 { int i,j,k; for(k=2;k<F.size();k++) { vector<string> f=F[k]; for(i=0;i<f.size();i++) { string str=f[i]; ap_generateRules(str); } } } void outputFrequenceSet() //输出频繁项目集 { int i,k; if(F.size()==1) { cout<<"无频繁项目集!"<<endl; return; } for(k=1;k<F.size();k++) { cout<<k<<"-频繁项目集:"<<endl; vector<string> f=F[k]; for(i=0;i<f.size();i++) cout<<f[i]<<endl; } } void outputRules() //输出关联规则 { int i; cout<<"关联规则:"<<endl; for(i=0;i<R.size();i++) { cout<<R[i]<<endl; } } void Apriori() { initTransactionSet(); genarateOneFrequenceSet(); generateKFrequenceSet(); outputFrequenceSet(); generateRules(); outputRules(); } int main(int argc, char *argv[]) { Apriori(); return 0; }
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16