京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中,我们最常遇到的就是无监督,有监督,半监督了。无监督和有监督的区别,小编之前跟大家分享过,今天跟大家分享的是无监督机器学习中常见的聚类算法,希望对大家无监督学习有所帮助。
一、基本概念
1.无监督学习:
无监督学习是机器学习的一种方法,根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题。无监督学习应用主要包含:聚类分析、关系规则、维度缩减。
2.聚类:
无监督学习里典型例子是聚类。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。
最常见的无监督聚类算法:
K均值聚类
分层聚类
基于密度的扫描聚类(DBSCAN)
二、无监督聚类算法--K均值聚类
K均值聚类 是我们最常用的基于欧式距离的聚类算法,它是数值的、非监督的、非确定的、迭代的,该算法旨在最小化一个目标函数——误差平方函数(所有的观测点与其中心点的距离之和),其认为两个目标的距离越近,相似度越大,由于具有出色的速度和良好的可扩展性,K均值聚类算得上是最著名的聚类方法。
1.K均值中最常用的距离是欧氏距离平方。m维空间中两点x和y之间的距离的示例是:
这里,j是采样点x和y的第j维(或特征列)。
集群惯性是聚类上下文中给出的平方误差之和的名称,表示如下:
其中μ(j)是簇j的质心,并且如果样本x(i)在簇j中则w(i,j)是1.否则是0.
K均值可以理解为试图最小化群集惯性因子的算法。
2.具体算法
(1)选择k值,即我们想要查找的聚类数量。
(2)算法将随机选择每个聚类的质心。
(3)将每个数据点分配给最近的质心(使用欧氏距离)。
(4)计算群集惯性。
(5)将计算新的质心作为属于上一步的质心的点的平均值。换句话说,通过计算数据点到每个簇中心的最小二次误差,将中心移向该点。
(6)返回第3步。
二、无监督聚类算法--分层聚类
1.分层聚类是基于prototyope的聚类算法的替代方案。分层聚类的主要优点是不需要指定聚类的数量,它会自己找到它。此外,它还可以绘制树状图。树状图是二元分层聚类的可视化。
在底部融合的观察是相似的,而在顶部的观察是完全不同的。对于树状图,基于垂直轴的位置而不是水平轴的位置进行结算。
2.分层聚类的类型
分层聚类有两种方法:集聚和分裂。
分裂:这种方法首先将所有数据点放入一个集群中。 然后,它将迭代地将簇分割成较小的簇,直到它们中的每一个仅包含一个样本。
集聚:这种方法从每个样本作为不同的集群开始,然后将它们彼此靠近,直到只有一个集群。
3.分层聚类优缺点
分层聚类的优点;
(1)由此产生的层次结构表示可以提供非常丰富的信息。
(2)树状图提供了一种有趣且信息丰富的可视化方式。
(3)当数据集包含真正的层次关系时,它们特别强大。
分层聚类的缺点:
(1)分层聚类对异常值非常敏感,并且在其存在的情况下,模型性能显着降低。
(2)从计算上讲,分层聚类非常昂贵。
三、无监督聚类算法--DBSCAN 聚类
DBSCAN(带噪声的基于密度的空间聚类方法)是一种流行的聚类算法,它被用来在预测分析中替代 K 均值算法。它并不要求输入簇的个数才能运行。但是,你需要对其他两个参数进行调优。
优缺点:
1.优点
①不需要指定簇的个数;
②可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集;
③擅长找到离群点(检测任务);
④两个参数ε\varepsilonε和minPts就够了;
⑤聚类结果没有偏倚,相对的,K-Means之类的聚类算法初始值对聚类结果有很大影响。
2.缺点
①高维数据有些困难;
②Sklearn中效率很慢(数据削减策略);
③如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合;
④调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值ε\varepsilonε,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12