京公网安备 11010802034615号
经营许可证编号:京B2-20210330
自2012年《哈佛商业评论》将数据科学家评为“21世纪最性感的工作”以来,似乎每个人和他们的母亲都在争先恐后地发展他们的数据科学技能。
而且是有充分理由的!根据2021年Robert Half Technology薪资指南,对数据科学家的需求只会继续增加,工资远远超过美国的全国平均水平,美国数据科学家的全国工资中位数为12.9万美元。
但是看过网上的炒作,你真的应该追求一个数据科学家的角色吗?
通过指导数据专业人员,我注意到许多人在没有对数据科学是否真正适合他们做彻底研究的情况下就投身于数据科学。他们最终做了这么多工作来提高技能,结果却得到了一个数据科学的职位,发现他们在工作中很糟糕。
我知道,因为我是其中之一。
早在2012年,我就学习了数据科学技能,只是意识到编码和构建数据解决方案不会给我寻找的成就感和快乐。
归根结底,数据科学实现并不合适。我开始意识到我需要做一些能从我的工作中看到发自内心的积极影响的事情。
那么我做了什么?
我从美国搬到泰国,开始了自己的数据业务--数据狂热。让我告诉你,这曾经很有趣吗!
在您投入多年的时间和精力研究数据科学之前,让我们探讨一些不同的选择。在数据的奇妙世界里,有如此多的职业机会。
为了彻底分析什么角色最适合你,我们将考虑五个不同的因素:
在本文结束时,您将对如何揭开您的最终数据梦想工作有一个坚实的掌握!
首先,我们来分析一下你现在的技能。我发现大多数数据专业人员往往在一个主要领域有严重的削减。这些主要技能往往是:
如果您是面向分析的,您擅长数据可视化、数据故事讲述、仪表板设计--也许您在Tableau或Power BI中构建仪表板和可视化。您还可以使用SQL查询和检索数据。
如果您是面向数据科学的,那么您就有编程经验,Python和R。您对机器学习、预测建模、统计和SQL有深刻的理解。
如果您是面向数据工程的,您将掌握ETL脚本和数据仓库方面的技能。随着技术的提高,您将在分布式计算环境中工作,构建数据管道,维护数据系统,并使用NoSQL。您还将了解如何使用C、C++、C sharp、Java、Scala等语言编写代码,以及使用NoSQL和SQL数据库的工程系统。
如果您是面向数据领导的,那么您擅长领导项目和团队。你将适合担任项目经理、产品经理或涉众管理等角色。您的超能力在于技术项目管理和数据策略领域!
现在是时候考虑一下你的职业目标了。当你展望未来时,你希望在你的数据职业生涯中处于什么位置?
您想成为领导有利可图的数据项目的焦点吗?
是否希望在幕后编码和构建数据解决方案,但拥有更多自主权?
还是您想构建自己的产品并为自己工作,而不必向任何人负责?
因为这也是绝对有可能的!
让我们聊聊性格类型。具体来说,你是内向的还是外向的?
如果你是内向的,你会更乐意做数据实现和编码工作。您会喜欢深入了解细节,而不必为管理客户和团队成员而分心。
如果你外向,那么你将在数据领导类型的角色中处于最佳状态。您将能够使用您的人际技能来管理团队和项目,而不是自己编写解决方案!
当我们谈论优先级时,我指的是你职业生涯的哪个赛季。
根据你的季节,你可能有不同的优先事项和需求。我喜欢通过马斯洛的需求层次来思考这个问题。
马斯洛的需求层次理论指出,所有人都有自我实现的愿望,但为了让我们优先考虑内心的满足,我们需要首先照顾我们最基本的需求。。
需要是:
重要的是他们按这个顺序被照顾。
那么,你会问,这和你的数据生涯有什么关系?
嗯,在我们职业生涯的开始,我们很多人都背负着助学贷款,刚从学校毕业,我们通常会考虑照顾我们最基本的需求(生理和安全)。我们的首要任务是在我们的头上建立一个屋顶,并获得一个稳定的财务地方。
但是一旦我们在事业上有所进步,我们的需求就会改变。我们开始想要得到认可,荣誉,晋升--换句话说,我们的尊重需要。最后,一旦我们得到了金钱和赞美,我们往往会发现自己在寻找更多。这是作为一个数据专业人员寻求真正实现和更大影响的阶段。
问问你自己:你现在最渴望从你的数据职业生涯中得到什么?是钱吗?是自由和荣誉吗?你想产生影响吗?
例如,数据实施工作通常是确保健康收入的最快途径。成为一名数据企业家或领导者可能需要更多的前期工作,但长期的成就感可能更强!
当谈到数据时,想想你最感兴趣的是什么。
我所在社区的大多数人都被四个领域之一所吸引:
问问你自己--对你来说什么是最有趣的?什么给你最多的能量?
如果是编码,您肯定想要研究数据实现角色。但如果这是管理项目、项目和产品,或者与业务进行咨询,那么考虑数据领导角色。如果创新更多的是你的果酱,那么你可能有创业的骨头!
世界是你拥有数据技能的牡蛎。没有必要仅仅因为数据科学是人们谈论最多的技术职业之一,就把自己限制在数据科学上。通过深入了解你的个性、激情、目标和技能,你将能够找到一份不仅报酬丰厚,而且从长远来看会给你带来真正成就感的工作。
如果你喜欢了解不同的数据职业道路,你可以追求,你会喜欢我的免费数据超级英雄测验!你将发现你内心的数据超级英雄类型,并获得个性化的数据职业建议,直接与你独特的数据技能、个性和激情的组合相一致。
在这里进行测验
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20