
我最近写了一篇题为数据科学家、数据工程师和其他数据职业的文章,解释说,在这篇文章中,我尽了最大努力简明扼要地定义和区分了五种流行的数据相关职业。在那篇文章中,每一个职业都得到了非常高水平的单句总结,数据科学家被描述如下,以供参考:
数据科学家主要关注数据、从数据中提取的洞察力以及数据可以讲述的故事。
除了我为每个职业写的额外的几个段落之外,我试图提出一个单一的总体差异特性,其中五个可以一起工作成一个流程图,也许由一个有抱负的数据专业人员使用,以帮助确定哪个职业可能最适合他们。
我收到了一些读者的反馈,这些反馈表明,我过于关注预测分析,将其作为数据科学家职业的一个定义性特征,我对这一特征的依赖可能会让人觉得数据科学家比其他任何事情都更擅长预测分析--而其他数据专业人员可能根本不会这样做。
这种建设性的批评很自然地让我思考:数据科学家与其他数据专业人员的区别还在于什么?数据科学家使用的技术技能、特定的技术语言、系统和工具很多。数据科学家--以及其他各种专业人员--也有许多软技能,用于在他们的职业生涯中出类拔萃。但是,成功的数据科学家的一些固有特征是什么,要么是随着数据科学家进入这个行业而来的,要么是他们进入这个行业后可以发展的?
以下是我提出的五个特征,作为一个整体,有助于将数据科学家与其他职业区分开来,并有助于定义一个成功的职业生涯。
让我们首先指出,所有的数据科学家角色都是不同的,但它们都有一些共同的连接线程,希望这些点有助于连接这些线程中的一些线程。
这个特性的焦点是我受到一些抨击的原因。然而,我要在这里加倍说明,预测分析思维模式是数据科学家的主要定义特征之一,也许比任何其他特征都更重要。它是唯一的定义特性吗?当然不。应该在流程图中使用它来将数据科学家从所有其他职业中分离出来吗?回想起来,不,可能不。
数据科学家进行预测分析吗?绝对。非数据科学家也是吗?当然。但是,如果我把data Scientisht放在预测分析的一端,而把<在这里插入其他数据专业人员>放在另一端,我希望data Scientisht总是能落地。
但这不仅仅是预测分析在特定情况下的应用;这是一种心态。这不仅仅是一种分析性的心态(减去预测性的),而是一种总是考虑如何利用我们已经知道的东西来发现我们还不知道的东西的心态。这表明预测性是方程的一个组成部分。
在我看来,数据科学家的头脑中不仅仅有预测,但在这种心态下工作是定义角色的特征之一,也是许多其他职业,无论是与数据相关的还是其他职业,都不具备的特征。其他确实有这种特点的人可能会把它放在对该职业有价值的人名单的后面。
显然,利用我们所知道的来找出我们所不知道的是不够的。数据科学家必须对他们有一种其他角色不一定需要有的好奇心(注意,我没有说其他人绝对不有这种好奇心)。好奇心几乎是预测分析心态的另一面:当预测分析心态寻求用y解决x时,好奇心将首先确定y是什么。
天生的好奇心是成为一个有用的数据科学家所必需的,故事结束了。如果你是那种早上醒来一整天都不去想宇宙奇迹的人--在任何层面上--数据科学都不适合你。
在杀死它之前,好奇心是这只猫作为一名成功的数据科学家的漫长而成功的职业生涯的原因。
这里有一个深刻的哲理:世界是一个复杂的地方。一切都以某种方式联系在一起,远远超出了显而易见的范围,这导致了现实世界的层层复杂性。复杂系统与其他复杂系统相互作用,产生自己的额外复杂系统,宇宙也是如此。这个复杂的游戏不仅仅是认识到大局:大局在什么地方适合大局,等等?
但这不仅仅是哲学上的。这个现实世界的无限复杂网络被数据科学家所认识。他们感兴趣的是了解尽可能多的相关互动,无论是潜在的还是其他的,因为他们解决了他们的问题。他们寻找与情况相关的已知未知、已知未知和未知未知,理解任何给定的变化都可能在其他地方产生意想不到的后果。
数据科学家的工作是尽可能多地了解相关系统,并利用他们的好奇心和预测性分析心态来尽可能多地解释这些系统的操作和交互,以便即使在调整时也能保持它们平稳运行。如果你不能理解为什么没有人能够完全解释经济是如何运作的,数据科学就不适合你。
现在我们来到了我们必须的“跳出框框思考”的特征。我们不是在某种程度上鼓励每个人都这样做吗?我们当然知道。但我不是这个意思。
记住,数据科学家不是在真空中工作的;我们与各种类型的不同角色一起工作,在我们的旅程中遇到各种不同的领域专家。这些领域专家有特殊的方法来看待他们的特定领域,即使是在跳出框框思考的时候。作为一名数据科学家,拥有一套独特的技能和一种特殊类型的心态--我将在这里尽我所能以某种方式描述这一点--您可以从领域专家所在的盒子之外解决问题。你可以成为一双新的眼睛,用新的眼光看待问题--当然,前提是你足够好地理解问题。你的创造力将帮助你产生新的想法和观点。
这并不是要削弱领域专家;事实上恰恰相反。我们数据科学家是他们的支持,并带来了一套经过培训的技能来做我们所做的事情,我们(希望)能够在我们的支持角色中带来一个新的视角,为领域专家能够在他们所做的事情上出类拔萃做出贡献。这一新的视角将由数据科学家的创造性思维驱动,这种创造性与好奇心相结合,将导致能够提出问题并寻求答案。
当然,我们需要技术、统计和其他技能来跟进这些问题,但如果我们没有创造力去思考有趣和不明显的方法来调查并最终提供答案,这些技能就毫无用处了。这就是为什么数据科学家必须天生具有创造性。
每个人都需要能够与他人有效沟通,无论他们在生活中处于何种地位。数据科学家也没有什么不同。
但除此之外,数据科学家在向其他利益相关者解释他们的工作时,经常不得不做一些手把手的工作,这些利益相关者可能没有--也可能没有意愿--完全沉浸在统计分析电影宇宙™中。一个数据科学家必须能够从A点叙述某人到B点,即使这个人几乎不知道这两个点中的任何一个到底是什么。说白了,讲故事就是能够从一些数据和你的分析过程中编织出一个现实的叙事:我们是如何从这个到这个的。
这不仅仅是简单地陈述事实;数据科学家必须看到利益相关者在等式中的位置,并使叙述旅程相关--也许用有用的视觉或其他道具来帮助完成众所周知的交易。
这种讲故事不像虚构的讲故事;它更像是“花式解释”,或者提供一个为听者量身定制的直观解释。你不会在睡觉前给一个五岁的孩子讲斯蒂芬·金的故事,就像你不会向从事研发的人深究关于供应链指标的枯燥、冗长的叙述一样。注意你的听众。
这种讲故事在本质上也不具有说服力;是解释性的。我们不是数据政治家,我们是数据科学家。科学家为了使别人屈从于他们的意志而歪曲统计数据,这是没有好处的。把这个留给当选的官员。
我希望这有助于描绘一幅我认为是一个成功的数据科学家的重要特征的丰富画面。我祝你事业顺利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14