数据清洗的意义相信大家都知道了吧?数据清洗就好比我们做菜的时候首先对食材进行清洗,防止某些不干净的东西影响我们食用时的口感以及给我们的健康带来隐患。所以说,数据清洗在数据分析工作中是一个十 ...
2019-03-25数据清洗工作是数据分析工作中不可缺少的步骤,这是因为数据清洗能够处理掉肮脏数据,如果不清洗数据的话,那么数据分析的结果准确率会变得极低。另外数据清洗工作占据数据分析工作整个过程的七成以上的 ...
2019-03-25我们都知道,进行数据分析工作的时候会用到很多的工具,比如说数据湖和数据仓库,不过这两者之间的差异和区别,可能会让人困惑。那么大家知道不知道数据湖和数据仓库的区别是什么呢?下面我们就给大家介 ...
2019-03-22在进行机器学习的时候,我们会接触到很多的数学知识,而这些数学知识有很多,比如说线性代数和概率统计。如果线性代数可以看成是数量还有结构的组合的话,那么概率统计就可以看成是模型还有数据的组合 ...
2019-03-22在学习机器学习知识的时候,我们会进行很多数学知识的学习,而这些数学知识中有线性代数,且线性代数在机器学习中有很大的作用。那么大家是否知道线性代数在机器学习中的作用是什么呢?下面我们就给大家 ...
2019-03-22一个好的流程能够为我们提供参考,也能够让我们的工作效率大大提高。所以说,我们在做数据可视化或者大屏数据可视化一定要找到一个好的流程。在这篇文章中我们就继续为大家介绍大屏数据可视化的流程,希 ...
2019-03-21大屏数据可视化的第一个步骤和第二个步骤我们给大家介绍过了。不过关于大屏数据可视化中的内容还不止这些。今天在这篇文章中我们会继续为大家介绍大屏数据可视化的相关知识,希望这篇文章能够帮助大家理 ...
2019-03-21大屏数据可视化在现在是一个十分流行的内容,在很多的电商中都有广泛的应用。正是由于这个原因,很多人在学习数据可视化的时候也顺带着把大屏数据可视化也学习了。可见做好大屏数据可视化是很多人的目标 ...
2019-03-21现如今,机器学习是一个十分常见的技术,而机器学习的范围也是很广的。一般来说,机器学习和模式识别、统计学习、数据挖掘、计算机视觉、语音识别、自然语言处理等等技术都有着极深的联系,从中我们可以 ...
2019-03-20由于现在人工智能的火热,接连着也推动了机器学习的高潮,而机器学习是现在很多技术的基础,比如说数据挖掘、统计学习、计算机视觉等等广泛使用的技术。我们在这篇文章中就给大家介绍一下关于机器学习涉 ...
2019-03-20大数据处理技术是一个十分重要的工作,就好比做菜,我们做菜之前就需要对蔬菜进行清洗,洗过的菜我们才能够吃的放心,同时还有助于我们的身体健康。而大数据处理就好比清洗蔬菜一样,当我们对数据整理以 ...
2019-03-20何为职场硬实力,除了一定的学历文凭,除了一本本的资格证书,更重要的是你所在行业的专业技能。不过专业技能不能成为你的优势,面对如今人才济济的市场,僧多粥少的局面早日抹去了你脸上的最后一缕自信 ...
2019-03-19我们在分析数据的时候,需要对数据进行整理,这样就能够方便数据分析工作。当然,数据加工是数据分析工作之前的工作,而在大数据处理中有很多数据整理的技术,其中最常见的就是冗余消除,那么什么是数据 ...
2019-03-19我们在做数据分析工作之前一定需要对数据进行观察并整理,这是因为挖掘出来的数据中含有很多无用的数据,这些数据不但消耗分析的时间,而且还会影响数据分析结果,所以我们需要对数据进行清洗。在这篇文 ...
2019-03-19数据分析行业是现阶段十分火热的行业,这也驱使很多人开始学习数据分析的相关知识。其实数据分析行业是有很多方向的,比如说数据挖掘工程师和数据研发工程师,以及分析师的相关职业。在这篇文章中我们就 ...
2019-03-19我们学习数据分析知识就是为了进入数据分析行业,但是数据分析行业中有很多的发展路线,这都是需要我们好好考虑的。一般来说,数据分析行业中最多的就是业务分析师,那么如何成为一个业务分析师呢?业务 ...
2019-03-19我们都知道,机器学习是一个十分实用的技术,而这一实用的技术中涉及到了很多的算法。所以说,我们要了解机器学习的话就要对这些算法掌握通透。在这篇文章中我们就给大家详细介绍一下机器学习中的回归算 ...
2019-03-18机器学习中有很多算法都是十分经典的,比如说降维算法以及梯度下降法,这些方法都能够帮助大家解决很多问题,因此学习机器学习一定要掌握这些算法,而且这些算法都是比较受大家欢迎的。在这篇文章中我们 ...
2019-03-18现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系都是服务于人工智能的。在这篇文章中我们给大家介绍一下关于机器 ...
2019-03-18在学习了机器学习的相关知识以后,我们知道其中的算法有很多种,比如回归算法、K近邻算法等等,这些都是需要大家掌握的算法,而神经网络算法是一个十分实用的算法,在这篇文章中我们就给大家介绍一下机器 ...
2019-03-15在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15