京公网安备 11010802034615号
经营许可证编号:京B2-20210330
何为职场硬实力,除了一定的学历文凭,除了一本本的资格证书,更重要的是你所在行业的专业技能。不过专业技能不能成为你的优势,面对如今人才济济的市场,僧多粥少的局面早日抹去了你脸上的最后一缕自信。优胜劣汰,你能力不如别人,你就得让道。如今的职场,真正体现硬实力的应是顺势而为和发展极具潜力的专业技能,这才能成为你职场生涯的一闭屏障,带你披荆斩棘,无往不胜。而说到职场硬实力,在大数据潮流下发展前景非常可观的就数数据分析师了。说到当下大数据分析的发展情况,当属美国发展得最好。近日,有美国方面的报道,宣称数据分析师应该是未来最具发展潜力的职业,就是说数据分析师的未来就业形势会更好,下面就跟随小编一起看看美国方面都是怎么说的吧!
数据分析师的职场发展:未来最具发展潜力的职业
数据分析师的职场发展,最近我有看到一篇报道,是讲述数据分析师的职场发展,提到数据分析师可能是未来最具发展潜力的职业。到底依据何在,逻辑何在?我们来一探究竟。
在美国,数据分析师平均每年薪酬高达17.5万美元。数据分析师将成为今后5 年最热门的职业。
尽管不少专家表示,美国的就业市场尚未完全恢复,但已出现一类行业,其在私营企业内所获得的薪酬比其它行业高出近70%。这一类行业被称为“数据分析”(Data Job)。
顾名思义,从事这一行业的人的共性是与数字打交道。因此,经济学家、会计、市场研究分析员,甚至化学家等,均可算为“数据分析”行业的从业者。
数据分析师是做什么的
阿里巴巴集团研究员薛贵荣就曾表示,“数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
大数据是眼下非常时髦的热词,同时也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。
数据分析师将成为今后5年最热门的职业之一
美国国家劳工统计局的数据显示,“数据分析师”是美国成长第二快的职业。劳工统计局的最新就业率报告预计该职业在2019年将有80万从业人员(增长53.4%)。
根据美国商务部发布的一项调研显示,在2013年,“数据分析”业在私营企业中所获得的平均时薪为40.3美元,比其它行业的平均时薪23.96美元要高出许多。
简单的来说,大数据时代的到来,标志着人类进入商务智能化时代。
其特点是就业面广,行行需要,薪金高,职业稳定,而且越老分析手段越多越有经验而不会被淘汰,并且可以在家里办公。
随着大数据在中国国内的发展,大数据相关人才却出现了供不应求的状况,数据分析师更是被媒体称为“未来最具发展潜力的职业之一”。
有媒体报道,在美国,数据分析师平均每年薪酬高达17.5万美元,而中国国内顶尖互联网公司,数据分析师的薪酬可能要比同一个级别的其他职位高20%至30%,且颇受企业重视。
当然,目前大数据在大型商家的应用,挑战依然很多。
虽然目前概念喊得很火,就目前阶段不是所有的大型综合体,大型商家具备数据意识和数据分析能力,以及目前数据量较少不具备太大的参考意义。
此外,仅仅是数据还解决不了问题,还需要懂运营、懂市场的企业参与,才能让数据的价值得到发挥。
尽管如此,具备强大的数据分析能力的大数据公司将会越来越受到商家的追捧。
从整个行业来看,数据分析师几乎覆盖了所有的行业,从数据类公司、咨询公司到物流、传媒公司等,无一不渗透着数据分析的内容。我们在今天遇见了一个新时代,一个虽然还在发展但前景辉煌的时代,数据分析已经潜在的覆盖了我们的生活,这其中离不开每位数据分析师的奋斗和努力。
我们都知道,比选择一份工作更重要的,是选对一个行业。有的行业正在萎缩、坍塌,有的行业却正势如破竹、快速兴起。硅谷投资人整理的美国正在快速发展的8个行业,分别为:软件行业私人理财顾问、生物医疗工程师、环境工程师、数据分析师、护士、理疗师和药剂师、健身教练。不管你是在找工作,抑或准备创业,相信都可以给你提供一个新的参考。
大数据时代已经到来,无论是即将毕业的学子,还是征战职场多年的人士;无论你是迷途不知归路的追梦人,还是事业遭遇瓶颈的彷徨者。如果你想进入数据分析行业,那么你就得尽早做好自己的人生规划。机不可失,失不再来,我们没有多少个十年可以荒废,父母也没有多少个十年可以等待。站在人生的十字路口,即将踏出全新一步的你,准备好了吗 ?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27