
CDA数据分析师 出品
作者:CDA教研组
编辑:Mika
背景:以某大型电商平台的用户行为数据为数据集,使用大数据处理技术分析海量数据下的用户行为特征,并通过建立逻辑回归模型、随机森林对用户行为做出预测;
案例思路:
#全部行输出
from
IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
数据字典:
U_Id:the serialized ID that represents a user
T_Id:the serialized ID that represents an item
C_Id:the serialized ID that represents the category which the corresponding item belongs to Ts:the timestamp of the behavior
Be_type:enum-type from (‘pv’, ‘buy’, ‘cart’, ‘fav’)
pv: Page view of an item's detail page, equivalent to an item click
buy: Purchase an item
cart: Add an item to shopping cart
fav: Favor an item
这里关键是使用dask库来处理海量数据,它的大多数操作的运行速度比常规pandas等库快十倍左右。
pandas在分析结构化数据方面非常的流行和强大,但是它最大的限制就在于设计时没有考虑到可伸缩性。pandas特别适合处理小型结构化数据,并且经过高度优化,可以对存储在内存中的数据执行快速高 效的操作。然而随着数据量的大幅度增加,单机肯定会读取不下的,通过集群的方式来处理是最好的选 择。这就是Dask DataFrame API发挥作用的地方:通过为pandas提供一个包装器,可以智能的将巨大的DataFrame分隔成更小的片段,并将它们分散到多个worker(帧)中,并存储在磁盘中而不是RAM中。
Dask DataFrame会被分割成多个部门,每个部分称之为一个分区,每个分区都是一个相对较小的 DataFrame,可以分配给任意的worker,并在需要复制时维护其完整数据。具体操作就是对每个分区并 行或单独操作(多个机器的话也可以并行),然后再将结果合并,其实从直观上也能推出Dask肯定是这么做的。
# 安装库(清华镜像)
# pip install dask -i
https://pypi.tuna.tsinghua.edu.cn/simple
import os
import gc # 垃圾回收接口
from tqdm import tqdm # 进度条库
import dask # 并行计算接口
from dask.diagnostics import ProgressBar
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import dask.dataframe as dd # dask中的数表处理库 import sys # 外部参数获取接口
面对海量数据,跑完一个模块的代码就可以加一行gc.collect()来做内存碎片回收,Dask Dataframes与Pandas Dataframes具有相同的API
gc.collect()
42
# 加载数据
data = dd.read_csv('UserBehavior_all.csv')# 需要时可以设置blocksize=参数来手工指定划分方法,默认是64MB(需要设置为总线的倍数,否则会放慢速度)
data.head()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
data
Dask DataFrame Structure :
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Dask Name: read-csv, 58 tasks
与pandas不同,这里我们仅获取数据框的结构,而不是实际数据框。Dask已将数据帧分为几块加载,这些块存在 于磁盘上,而不存在于RAM中。如果必须输出数据帧,则首先需要将所有数据帧都放入RAM,将它们缝合在一 起,然后展示最终的数据帧。使用.compute()强迫它这样做,否则它不.compute() 。其实dask使用了一种延迟数 据加载机制,这种延迟机制类似于python的迭代器组件,只有当需要使用数据的时候才会去真正加载数据。
# 真正加载数据 data.compute()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
# 可视化工作进程,58个分区任务 data.visualize()
数据压缩
# 查看现在的数据类型 data.dtypes
U_Id int64
T_Id int64
C_Id int64
Be_type object
Ts int64
dtype: object
# 压缩成32位uint,无符号整型,因为交易数据没有负数 dtypes = {
'U_Id': 'uint32',
'T_Id': 'uint32',
'C_Id': 'uint32',
'Be_type': 'object',
'Ts': 'int64'
}
data = data.astype(dtypes)
data.dtypes
U_Id uint32
T_Id uint32
C_Id uint32
Be_type object
Ts int64
dtype: object
# 以dask接口读取的数据,无法直接用.isnull()等pandas常用函数筛查缺失值
data.isnull()
Dask DataFrame Structure :
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
columns1 = [ 'U_Id', 'T_Id', 'C_Id', 'Be_type', 'Ts']
tmpDf1 = pd.DataFrame(columns=columns1)
tmpDf1
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
s = data["U_Id"].isna()
s.loc[s == True]
Dask Series Structure:
npartitions=58
bool ...
... ...
...
Name: U_Id, dtype: bool
Dask Name: loc-series, 348 tasks
U_Id列缺失值数目为0
T_Id列缺失值数目为0
C_Id列缺失值数目为0
Be_type列缺失值数目为0
Ts列缺失值数目为0
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
无缺失值
数据探索与可视化
这里我们使用pyecharts库。pyecharts是一款将python与百度开源的echarts结合的数据可视化工具。新版的1.X和旧版的0.5.X版本代码规则大 不相同,新版详见官方文档
https://gallery.pyecharts.org/#/README
# pip install pyecharts -i https://pypi.tuna.tsinghua.edu.cn/simple
Looking in indexes: https:
//pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pyecharts in d:anacondalibsite-packages (0.1.9.4)
Requirement already satisfied: jinja2 in d:anacondalibsite-packages (from pyecharts)
(3.0.2)
Requirement already satisfied: future in d:anacondalibsite-packages (from pyecharts)
(0.18.2)
Requirement already satisfied: pillow in d:anacondalibsite-packages (from pyecharts)
(8.3.2)
Requirement already satisfied: MarkupSafe>=2.0 in d:anacondalibsite-packages (from
jinja2->pyecharts) (2.0.1)
Note: you may need to restart the kernel to use updated packages.
U_Id列缺失值数目为0 T_Id列缺失值数目为0 C_Id列缺失值数目为0 Be_type列缺失值数目为0 Ts列缺失值数目为0
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
# 例如,我们想画一张漂亮的饼图来看各种用户行为的占比 data["Be_type"]
# 使用dask的时候,所有支持的原pandas的函数后面需加.compute()才能最终执行
Be_counts = data["Be_type"].value_counts().compute()
Be_counts
pv 89716264
cart 5530446
fav 2888258
buy 2015839
Name: Be_type, dtype: int64
Be_index = Be_counts.index.tolist() # 提取标签
Be_index
['pv', 'cart', 'fav', 'buy']
Be_values = Be_counts.values.tolist() # 提取数值
Be_values
[89716264, 5530446, 2888258, 2015839]
from pyecharts import options as opts
from pyecharts.charts import Pie
#pie这个包里的数据必须传入由元组组成的列表
c = Pie()
c.add("", [list(z) for z in zip(Be_index, Be_values)]) # zip函数的作用是将可迭代对象打包成一 个个元组,然后返回这些元组组成的列表 c.set_global_opts(title_opts=opts.TitleOpts(title="用户行为")) # 全局参数(图命名) c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
c.render_notebook() # 输出到当前notebook环境
# c.render("pie_base.html") # 若需要可以将图输出到本机
<pyecharts.charts.basic_charts.pie.Pie at 0x1b2da75ae48>
<div id="490361952ca944fcab93351482e4b254" style="width:900px; height:500px;"></div>
from pyecharts.charts import Funnel # 旧版的pyecharts不需要.charts即可import import pyecharts.options as opts
from IPython.display import Image as IMG
from pyecharts import options as opts
from pyecharts.charts import Pie
<pyecharts.charts.basic_charts.funnel.Funnel at 0x1b2939d50c8>
<div id="071b3b906c27405aaf6bc7a686e36aaa" style="width:800px; height:400px;"></div>
时间戳转换
dask对于时间戳的支持非常不友好
type(data)
dask.dataframe.core.DataFrame
data['Ts1']=data['Ts'].apply(lambda x: time.strftime("%Y-%m-%d %H:%M:%S",
time.localtime(x)))
data['Ts2']=data['Ts'].apply(lambda x: time.strftime("%Y-%m-%d", time.localtime(x)))
data['Ts3']=data['Ts'].apply(lambda x: time.strftime("%H:%M:%S", time.localtime(x)))
D:anacondalibsite-packagesdaskdataframecore.py:3701: UserWarning:
You did not provide metadata, so Dask is running your function on a small dataset to
guess output types. It is possible that Dask will guess incorrectly.
To provide an explicit output types or to silence this message, please provide the
`meta=` keyword, as described in the map or apply function that you are using.
Before: .apply(func)
After: .apply(func, meta=('Ts', 'object'))
warnings.warn(meta_warning(meta))
data.head(1)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
data.dtypes
U_Id uint32
T_Id uint32
C_Id uint32
Be_type object
Ts int64
Ts1 object
Ts2 object
Ts3 object
dtype: object
抽取一部分数据来调试代码
df = data.head(1000000)
df.head(1)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
用户流量和购买时间情况分析
用户行为统计表
describe = df.loc[:,["U_Id","Be_type"]]
ids = pd.DataFrame(np.zeros(len(set(list(df["U_Id"])))),index=set(list(df["U_Id"])))
pv_class=describe[describe["Be_type"]=="pv"].groupby("U_Id").count()
pv_class.columns = ["pv"]
buy_class=describe[describe["Be_type"]=="buy"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10