
CDA数据分析师 出品
作者:CDA教研组
编辑:Mika
背景:以某大型电商平台的用户行为数据为数据集,使用大数据处理技术分析海量数据下的用户行为特征,并通过建立逻辑回归模型、随机森林对用户行为做出预测;
案例思路:
#全部行输出
from
IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
数据字典:
U_Id:the serialized ID that represents a user
T_Id:the serialized ID that represents an item
C_Id:the serialized ID that represents the category which the corresponding item belongs to Ts:the timestamp of the behavior
Be_type:enum-type from (‘pv’, ‘buy’, ‘cart’, ‘fav’)
pv: Page view of an item's detail page, equivalent to an item click
buy: Purchase an item
cart: Add an item to shopping cart
fav: Favor an item
这里关键是使用dask库来处理海量数据,它的大多数操作的运行速度比常规pandas等库快十倍左右。
pandas在分析结构化数据方面非常的流行和强大,但是它最大的限制就在于设计时没有考虑到可伸缩性。pandas特别适合处理小型结构化数据,并且经过高度优化,可以对存储在内存中的数据执行快速高 效的操作。然而随着数据量的大幅度增加,单机肯定会读取不下的,通过集群的方式来处理是最好的选 择。这就是Dask DataFrame API发挥作用的地方:通过为pandas提供一个包装器,可以智能的将巨大的DataFrame分隔成更小的片段,并将它们分散到多个worker(帧)中,并存储在磁盘中而不是RAM中。
Dask DataFrame会被分割成多个部门,每个部分称之为一个分区,每个分区都是一个相对较小的 DataFrame,可以分配给任意的worker,并在需要复制时维护其完整数据。具体操作就是对每个分区并 行或单独操作(多个机器的话也可以并行),然后再将结果合并,其实从直观上也能推出Dask肯定是这么做的。
# 安装库(清华镜像)
# pip install dask -i
https://pypi.tuna.tsinghua.edu.cn/simple
import os
import gc # 垃圾回收接口
from tqdm import tqdm # 进度条库
import dask # 并行计算接口
from dask.diagnostics import ProgressBar
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
import dask.dataframe as dd # dask中的数表处理库 import sys # 外部参数获取接口
面对海量数据,跑完一个模块的代码就可以加一行gc.collect()来做内存碎片回收,Dask Dataframes与Pandas Dataframes具有相同的API
gc.collect()
42
# 加载数据
data = dd.read_csv('UserBehavior_all.csv')# 需要时可以设置blocksize=参数来手工指定划分方法,默认是64MB(需要设置为总线的倍数,否则会放慢速度)
data.head()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
data
Dask DataFrame Structure :
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Dask Name: read-csv, 58 tasks
与pandas不同,这里我们仅获取数据框的结构,而不是实际数据框。Dask已将数据帧分为几块加载,这些块存在 于磁盘上,而不存在于RAM中。如果必须输出数据帧,则首先需要将所有数据帧都放入RAM,将它们缝合在一 起,然后展示最终的数据帧。使用.compute()强迫它这样做,否则它不.compute() 。其实dask使用了一种延迟数 据加载机制,这种延迟机制类似于python的迭代器组件,只有当需要使用数据的时候才会去真正加载数据。
# 真正加载数据 data.compute()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
# 可视化工作进程,58个分区任务 data.visualize()
数据压缩
# 查看现在的数据类型 data.dtypes
U_Id int64
T_Id int64
C_Id int64
Be_type object
Ts int64
dtype: object
# 压缩成32位uint,无符号整型,因为交易数据没有负数 dtypes = {
'U_Id': 'uint32',
'T_Id': 'uint32',
'C_Id': 'uint32',
'Be_type': 'object',
'Ts': 'int64'
}
data = data.astype(dtypes)
data.dtypes
U_Id uint32
T_Id uint32
C_Id uint32
Be_type object
Ts int64
dtype: object
# 以dask接口读取的数据,无法直接用.isnull()等pandas常用函数筛查缺失值
data.isnull()
Dask DataFrame Structure :
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
columns1 = [ 'U_Id', 'T_Id', 'C_Id', 'Be_type', 'Ts']
tmpDf1 = pd.DataFrame(columns=columns1)
tmpDf1
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
s = data["U_Id"].isna()
s.loc[s == True]
Dask Series Structure:
npartitions=58
bool ...
... ...
...
Name: U_Id, dtype: bool
Dask Name: loc-series, 348 tasks
U_Id列缺失值数目为0
T_Id列缺失值数目为0
C_Id列缺失值数目为0
Be_type列缺失值数目为0
Ts列缺失值数目为0
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
无缺失值
数据探索与可视化
这里我们使用pyecharts库。pyecharts是一款将python与百度开源的echarts结合的数据可视化工具。新版的1.X和旧版的0.5.X版本代码规则大 不相同,新版详见官方文档
https://gallery.pyecharts.org/#/README
# pip install pyecharts -i https://pypi.tuna.tsinghua.edu.cn/simple
Looking in indexes: https:
//pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pyecharts in d:anacondalibsite-packages (0.1.9.4)
Requirement already satisfied: jinja2 in d:anacondalibsite-packages (from pyecharts)
(3.0.2)
Requirement already satisfied: future in d:anacondalibsite-packages (from pyecharts)
(0.18.2)
Requirement already satisfied: pillow in d:anacondalibsite-packages (from pyecharts)
(8.3.2)
Requirement already satisfied: MarkupSafe>=2.0 in d:anacondalibsite-packages (from
jinja2->pyecharts) (2.0.1)
Note: you may need to restart the kernel to use updated packages.
U_Id列缺失值数目为0 T_Id列缺失值数目为0 C_Id列缺失值数目为0 Be_type列缺失值数目为0 Ts列缺失值数目为0
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -umpy (d:anacondalibsite-packages)
WARNING: Ignoring invalid distribution -ip (d:anacondalibsite-packages)
# 例如,我们想画一张漂亮的饼图来看各种用户行为的占比 data["Be_type"]
# 使用dask的时候,所有支持的原pandas的函数后面需加.compute()才能最终执行
Be_counts = data["Be_type"].value_counts().compute()
Be_counts
pv 89716264
cart 5530446
fav 2888258
buy 2015839
Name: Be_type, dtype: int64
Be_index = Be_counts.index.tolist() # 提取标签
Be_index
['pv', 'cart', 'fav', 'buy']
Be_values = Be_counts.values.tolist() # 提取数值
Be_values
[89716264, 5530446, 2888258, 2015839]
from pyecharts import options as opts
from pyecharts.charts import Pie
#pie这个包里的数据必须传入由元组组成的列表
c = Pie()
c.add("", [list(z) for z in zip(Be_index, Be_values)]) # zip函数的作用是将可迭代对象打包成一 个个元组,然后返回这些元组组成的列表 c.set_global_opts(title_opts=opts.TitleOpts(title="用户行为")) # 全局参数(图命名) c.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
c.render_notebook() # 输出到当前notebook环境
# c.render("pie_base.html") # 若需要可以将图输出到本机
<pyecharts.charts.basic_charts.pie.Pie at 0x1b2da75ae48>
<div id="490361952ca944fcab93351482e4b254" style="width:900px; height:500px;"></div>
from pyecharts.charts import Funnel # 旧版的pyecharts不需要.charts即可import import pyecharts.options as opts
from IPython.display import Image as IMG
from pyecharts import options as opts
from pyecharts.charts import Pie
<pyecharts.charts.basic_charts.funnel.Funnel at 0x1b2939d50c8>
<div id="071b3b906c27405aaf6bc7a686e36aaa" style="width:800px; height:400px;"></div>
时间戳转换
dask对于时间戳的支持非常不友好
type(data)
dask.dataframe.core.DataFrame
data['Ts1']=data['Ts'].apply(lambda x: time.strftime("%Y-%m-%d %H:%M:%S",
time.localtime(x)))
data['Ts2']=data['Ts'].apply(lambda x: time.strftime("%Y-%m-%d", time.localtime(x)))
data['Ts3']=data['Ts'].apply(lambda x: time.strftime("%H:%M:%S", time.localtime(x)))
D:anacondalibsite-packagesdaskdataframecore.py:3701: UserWarning:
You did not provide metadata, so Dask is running your function on a small dataset to
guess output types. It is possible that Dask will guess incorrectly.
To provide an explicit output types or to silence this message, please provide the
`meta=` keyword, as described in the map or apply function that you are using.
Before: .apply(func)
After: .apply(func, meta=('Ts', 'object'))
warnings.warn(meta_warning(meta))
data.head(1)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
data.dtypes
U_Id uint32
T_Id uint32
C_Id uint32
Be_type object
Ts int64
Ts1 object
Ts2 object
Ts3 object
dtype: object
抽取一部分数据来调试代码
df = data.head(1000000)
df.head(1)
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
用户流量和购买时间情况分析
用户行为统计表
describe = df.loc[:,["U_Id","Be_type"]]
ids = pd.DataFrame(np.zeros(len(set(list(df["U_Id"])))),index=set(list(df["U_Id"])))
pv_class=describe[describe["Be_type"]=="pv"].groupby("U_Id").count()
pv_class.columns = ["pv"]
buy_class=describe[describe["Be_type"]=="buy"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14