京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是什么_数据分析师培训
目前,大多数人对大数据的概念还停留在:就是海量的数据,PB(1PB=1024TB)级别的,甚至是 EB、ZB 以上的数据,通过对这些数据进行深入分析,就能得出非常有价值的结论,指引企业做出最佳决策。
其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数据分析,是通过提出假设然后获得相应数据,最后通过数据分析来验证假设。而大数据不是这样的,大数据是从收集的海量数据中,通过算法将这些来自不同渠道、格式的数据进行直接分析,从中寻找到数据之间的相关性。简单而言,大数据更偏重于发现,以及猜测/印证的循环逼近过程。
而大数据的价值体现在对它的分析利用上。一直以来,大数据的瓶颈并不是数据规模巨大导致的存储、运算等问题,而是在前端数据的收集途径,以及对数据进行结构化处理,进而引导后期的商业决策中的模型和算法问题。
各个行业都在产生数据,现代社会的数据量正持续地以前所未有的速度增加着。这些不同类型的数据和数据型,极其复杂,包括结构化、半结构化和非结构化的数据。企业需要整合并分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。随着传感器、智能设备和社会协同技术的爆炸性增长,数据的类型变得难以计数,包括文本、微博、传感器数据、音频、视频等。
在当前数据驱动的时代,企业面临着前所未有的数据增长和多样性挑战。传统的分析方法已难以满足快速变化的市场需求。大数据不仅仅是海量信息的堆积,更是通过先进的算法和工具,从复杂的数据中提取有价值的洞察,辅助企业做出明智决策的过程。这要求数据分析师具备从数据收集、处理、分析到可视化的全方位能力。
为帮助您系统掌握这些关键技能,CDA推出了全面的数据分析课程体系,涵盖从基础到高级的各个层级,适合不同背景和需求的学习者。
专为初学者设计,课程内容包括:
通过实用案例教学,帮助学员快速掌握数据分析的基本工具和方法。
适合希望深入学习的学员,课程内容包括:
统计学基础与数据分析理论
高级Excel与Power BI应用
SQL数据库高级操作
实际业务场景的数据分析项目
课程强调理论与实践相结合,提升学员在实际工作中的数据分析能力。
针对希望转型为数据分析师的职场人士,课程内容包括:
课程由专职教研团队设计,适合零基础学员,帮助学员从入门到就业实现全面转型。
系统全面:课程涵盖数据分析所需的各个方面,从基础工具到高级技术,满足不同学习阶段的需求。
实战导向:通过丰富的案例教学和项目实践,提升学员解决实际问题的能力。
权威认证:完成课程并通过考试后,可获得CDA数据分析师认证,提升职业竞争力。
就业支持:提供职业规划、简历优化、面试指导等全方位就业服务,助力学员顺利进入数据分析领域。
立即行动,开启数据分析职业之路!
无论您是刚刚接触数据分析,还是希望在职业生涯中实现转型,CDA网校都能为您提供专业的课程和支持。点击下方链接,了解更多课程详情,开始您的学习之旅:
掌握数据分析技能,拥抱未来职业发展的无限可能!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27