
相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这里面不仅要用到python,还要用到数据分析的方法论,对于只用过excel的同学来说,这无疑是太难了,事到临头,再重头去学,无疑是个很漫长的过程,而我正好又懒癌复发了……。
不要急,下面就给大家介绍一款工具,可以通过自然语言的方式,把你的分析需求告诉它,它就能帮你实现代码的生成,数据分析方法的运用。它就是字节跳动最新发布的一款工具—Trae。
Trae是一款AI与传统IDE结合的工具,可以根据使用自然语言提出的需求,自动转化成代码后执行,实现需求-结果之间的零技术门槛的跨越。
下面我们先介绍一下它的安装部署
1)请先安装python解释器及开发工具后,再安装配置trae,因为单独安装python解释器和开发工具,过程比较繁琐,建议安装anaconda进行傻瓜式安装,具体可参考如下链接
anaconda安装过程:https://blog.csdn.net/yoggieCDA/article/details/147205853
2)跳过注册过程
3)下载anaconda安装包
4)参考如下链接,进行anaconda安装:
https://blog.csdn.net/yoggieCDA/article/details/147205853
1)在Builder模式下,输入提示词:配置python环境。
2)选择一个文件夹,以用来存放项目文件
3)配置虚拟环境
4)如出现以下提示,请按标识进行操作,选择安装好的python解释器
5)在提示词输入框中,输入:“激活虚拟环境”并回车执行
6)安装python开发工具及数据分析相关的包
7)环境配置成功
完成配置成功以后,让我们小试牛刀吧,
下面我们将用两个案例来带领大家快速上手这款工具。
数据分析工作中,常常会遇到多表合并为一张表的情况,如历年的销售数据,各月份的销售数据等,以往多张表的合并,要在python中实现,需要大家编写代码,有一定的编程基础。
现有如下几张数据表,记录了不同年份,不同区域市场的销售金额及利润情况,现需要多张表合并为一张表。
角色:我是一名数据分析师,经常使用python做数据整合、清理和可视化问题。
背景描述:本文件夹目录下有两个子文件夹,分别是“原始数据”子文件夹和“整合数据”子文件夹。
任务:
注意事项:
执行结果:
从这个案例我们可以看出数据分析的很多环节,都可以用AI来提高效率,节省你宝贵的时间和精力。大家不妨先思考这样一个问题:平时你做数据分析流程步骤是怎样的?在我看来,数据分析基本有这样5个环节:
数据分析是从明确问题和理解数据开始的,接着对数据清洗,比如说处理缺失值、调整数据格式等等,然后使用合适的数据分析方法,对数据展开分析,最后将数据结果进行可视化,直观的展示数据分析的结论这就是一套完整的数据分析工作流程,那么,现在AI来了以后,数据分析的这5个环节发生变化了吗?
并没有,可能分析的手法变了,比如过去清洗数据,要熟练的掌握Excel各种函数,现在可以通过提示词让AI来辅助完成。但是,数据分析的这5个环节一个也没少,所以大家不要只热衷于追逐新冒出来的各种AI工具,关键是要透彻掌握数据分析的底层逻辑。CDA数据分析师一级里讲解了数据分析方法、基本的流程、业务数据分析等。
再举个例子,某行信用卡中心需根据资金使用情况,进行资金使用量的预测,以提前准备适当的现金,以往的资金预测需要使用python进行,会用到建模等方法,现有了AI,请尝试使用AI辅助相应技术的实现。
提示词:
我是一名数据分析师,经常使用python做数据整合、清理、可视化、时间序列分析、数据挖掘的问题。
背景描述:本文件夹目录下有一个“信用卡消费额_含节日.xlsx”文件。
任务:
执行结果
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21