京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA持证人简介:
程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等大厂担任产品经理。
学习入口:https://edu.cda.cn/goods/show/3881?targetId=6832&preview=0
人力驱动广告投放:以购买便宜流量为例,商务发现便宜流量后,需通知运营进行试投放,运营分析后找财务申请资金,投放后还要分析效果并写报告,过程繁琐,依赖个人且效率低,易出现沟通成本高、决策风险大等问题。

数据驱动广告投放:任何公司投流,都一定要搭建流量监控体系,自动监控流量报价,发现便宜流量后自动进行小流量试投放,依据 ROI 选择最佳渠道并自动投放,同时利用人工智能准备物料,最后自动汇总结果,相比人力驱动更加稳定、高效,经验可继承。


北极星指标:数据驱动业务的前提是目标可量化且可驱动,不同产品或公司的北极星指标不同,如社交平台关注活跃用户数,美团在一定阶段更注重订单完成数。确定北极星指标后,数据可依据该指标进行决策,明确业务重点方向。

业务流程模式化:业务流程一定要总结、通用且可复用,以电商订单处理流程为例,各环节都要固化,数据才能在相应环节发挥决策作用,比如选择快递公司时可依据用户偏好和购买物品进行决策。同时,业务流程并非一成不变,要根据实际情况优化,如拼多多简化购物流程,如何判断流程是否模式化?就看新人能否依据文档完成工作来判断



搭建原因:以腾讯体育为例,不同业务如足球会员、篮球会员充值,在数据处理上存在大量重复工作,数据平台可将数据加工成半成品,提高数据处理效率,减少重复劳动。

平台分层:数据平台包括数据采集,收集用户行为数据、融合第三方数据;数据清洗包括处理脏数据,进行关联转化备份;数据处理,即可视化分析、建立决策模型;比如依据历史广告投放数据决定是否再次购买某平台流量和数据应用,提供决策建议、异常报警、自助分析工具等。

数据分工问题:数据归属不明确,业务部门和数据中台可能因数据所有权产生矛盾。解决方案是数据共有,业务部门和数据中台都有权获取所需数据,避免数据垄断。
资源问题:数据中台可能因资源有限拒绝业务部门的数据需求。解决办法是支持共建,开放数据接口,让业务部门在紧急时可自行获取数据。
算法结果可解释性问题:算法团队提供的预测结果可能难以解释,导致与业务部门产生矛盾。双方需协商确定是注重可解释性还是效果,若注重可解释性,算法提供简单模型但不负责准确率;若注重效果,算法需为结果负责。
数据安全问题:数据中台存在数据安全风险,如员工可能获取并泄露敏感数据。解决措施包括建立审批流,限制人员访问超出权限的数据;个人尽量不接触原数据,通过结果数据实现业务需求;对部分数据进行脱敏处理,如隐藏手机号中间几位。

目标用户定位:通过白盒化和黑盒化两种方式确定目标用户,白盒化即依据用户经济条件、性别等可解释信息,如盒马典型用户为 40 岁以上经济条件较好、掌管买菜大权的女性,但上海男性用户在盒马消费也较多。黑盒化指利用人格算法,虽不可解释但能筛选出精准用户。

转化路径设计:盒马门店选址都是在潜在用户集中地,通过发券鼓励线上购买,之后利用短信精准触达附近潜在用户;也加大地推,依据数据选择潜力小区摆摊,提高拉新效果,且数据可助力经验复制到新城市。

数据处理方法:介绍潜在用户模型,依据用户特征扩大潜在用户池;通过数据关联,如设备 ID、邮箱地址等判断多账号是否属于同一用户。
业务数据分析是CDA数据分析师一级的重要考点。

项目背景与问题:国企部门开服务点涉及多部门,规划部、考察部和选址部领导希望开店,对外洽谈商务可能因租金问题有异议,导致决策困难。

数据驱动解决方案:分析各部门痛点,为领导提供决策数据(如点位人流量、潜在用户数量等),为商务提供数据支持以申请租金调整,解决各方问题,赢得信任,促进合作。

程靖老师详细解读数据驱动业务本质,对比人力驱动的弊端,强调北极星指标和业务流程模式化的重要性。深入探讨数据平台搭建、作用、面临的问题及解决办法,并分享 C 端盒马拉新和 B 端国企服务点选址的实战案例,助力同学们在工作学习中更好地运用数据推动业务创新发展。
学习入口:https://edu.cda.cn/goods/show/3881?targetId=6832&preview=0
如果大家想听程老师完整版分享视频,可以微信扫码免费学习。同时,也期待大家持续关注 CDA 持证人的后续活动,获取更多专业知识和行业经验~
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05