
作者:俊欣
来源:关于数据分析与可视化
今天小编打算稍微中规中矩一些,写一篇技术类的干货文章。
这篇文章小编来讲讲lambda方法以及它在pandas模块当中的运用,熟练掌握可以极大地提高数据分析与挖掘的效率
我们第一步需要导入模块以及数据集
import pandas as pd
df = pd.read_csv("IMDB-Movie-Data.csv")
df.head()
一般我们是通过在现有两列的基础上进行一些简单的数学运算来创建新的一列,例如
df['AvgRating'] = (df['Rating'] + df['Metascore']/10)/2
但是如果要新创建的列是经过相当复杂的计算得来的,那么lambda方法就很多必要被运用到了,我们先来定义一个函数方法
def custom_rating(genre,rating): if 'Thriller' in genre: return min(10,rating+1) elif 'Comedy' in genre: return max(0,rating-1) elif 'Drama' in genre: return max(5, rating-1) else: return rating
我们对于不同类别的电影采用了不同方式的评分方法,例如对于“惊悚片”,评分的方法则是在“原来的评分+1”和10分当中取一个最小的,而对于“喜剧”类别的电影,则是在0分和“原来的评分-1”当中取一个最大的,然后我们通过apply方法和lambda方法将这个自定义的函数应用在这个DataFrame数据集当中
df["CustomRating"] = df.apply(lambda x: custom_rating(x['Genre'], x['Rating']), axis = 1)
我们这里需要说明一下axis参数的作用,其中axis=1代表跨列而axis=0代表跨行,如下图所示
在pandas当中筛选数据相对来说比较容易,可以用到& | ~这些操作符,代码如下
# 单个条件,评分大于5分的 df_gt_5 = df[df['Rating']>5] # 多个条件: AND - 同时满足评分高于5分并且投票大于100000的 And_df = df[(df['Rating']>5) & (df['Votes']>100000)] # 多个条件: OR - 满足评分高于5分或者投票大于100000的 Or_df = df[(df['Rating']>5) | (df['Votes']>100000)] # 多个条件:NOT - 将满足评分高于5分或者投票大于100000的数据排除掉 Not_df = df[~((df['Rating']>5) | (df['Votes']>100000))]
这些都是非常简单并且是常见的例子,但是要是我们想要筛选出电影的影名长度大于5的部分,要是也采用上面的方式就会报错
df[len(df['Title'].split(" "))>=5]
output
AttributeError: 'Series' object has no attribute 'split'
这里我们还是采用apply和lambda相结合,来实现上面的功能
#创建一个新的列来存储每一影片名的长度 df['num_words_title'] = df.apply(lambda x : len(x['Title'].split(" ")),axis=1) #筛选出影片名长度大于5的部分 new_df = df[df['num_words_title']>=5]
当然要是大家觉得上面的方法有点繁琐的话,也可以一步到位
new_df = df[df.apply(lambda x : len(x['Title'].split(" "))>=5,axis=1)]
例如我们想要筛选出那些影片的票房低于当年平均水平的数据,可以这么来做。
我们先要对每年票房的的平均值做一个归总,代码如下
year_revenue_dict = df.groupby(['Year']).agg({'Revenue(Millions)':np.mean}).to_dict()['Revenue(Millions)']
然后我们定义一个函数来判断是否存在该影片的票房低于当年平均水平的情况,返回的是布尔值
def bool_provider(revenue, year): return revenue
然后我们通过结合apply方法和lambda方法应用到数据集当中去
new_df = df[df.apply(lambda x : bool_provider(x['Revenue(Millions)'],
x['Year']),axis=1)]
我们筛选数据的时候,主要是用.loc方法,它同时也可以和lambda方法联用,例如我们想要筛选出评分在5-8分之间的电影以及它们的票房,代码如下
df.loc[lambda x: (x["Rating"] > 5) & (x["Rating"] < 8)][["Title", "Revenue (Millions)"]]
转变指定列的数据类型
通常我们转变指定列的数据类型,都是调用astype方法来实现的,例如我们将“Price”这一列的数据类型转变成整型的数据,代码如下
df['Price'].astype('int')
会出现如下所示的报错信息
ValueError: invalid literal for int() with base 10: '12,000'
因此当出现类似“12,000”的数据的时候,调用astype方法实现数据类型转换就会报错,因此我们还需要将到apply和lambda结合进行数据的清洗,代码如下
df['Price'] = df.apply(lambda x: int(x['Price'].replace(',', '')),axis=1)
方法调用过程的可视化
有时候我们在处理数据集比较大的时候,调用函数方法需要比较长的时间,这个时候就需要有一个要是有一个进度条,时时刻刻向我们展示数据处理的进度,就会直观很多了。
这里用到的是tqdm模块,我们将其导入进来
from tqdm import tqdm, tqdm_notebook
tqdm_notebook().pandas()
然后将apply方法替换成progress_apply即可,代码如下
df["CustomRating"] = df.progress_apply(lambda x: custom_rating(x['Genre'],x['Rating']),axis=1)
output
当lambda方法遇到if-else
当然我们也可以将if-else运用在lambda自定义函数当中,代码如下
Bigger = lambda x, y : x if(x > y) else y
Bigger(2, 10)
output
10
当然很多时候我们可能有多组if-else,这样写起来就有点麻烦了,代码如下
df['Rating'].apply(lambda x:"低分电影" if x < 3 else ("中等电影" if x>=3 and x < 5 else("高分电影" if x>=8 else "值得观看")))
看上去稍微有点凌乱了,这个时候,小编这里到还是推荐大家自定义函数,然后通过apply和lambda方法搭配使用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10