cda

数字化人才认证

首页 > 行业图谱 >

多元 线性回归 实战笔记

多元线性回归实战笔记
2016-10-01
多元线性回归实战笔记 R语言中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整。这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及《R语言 ...

R实现多元 线性回归 分析!

R实现多元线性回归分析!
2016-06-20
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整。这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及《R语言实战》的OLS(Ordinary Least Squa ...

scikit-learn的 线性回归 模型

scikit-learn的线性回归模型
2016-05-05
scikit-learn的线性回归模型 特征选择的方法 作为有监督学习,分类问题是预测类别结果,而回归问题是预测一个连续的结果。 1. 使用pandas来读取数据 Panda ...

 线性回归 介绍之一

线性回归介绍之一
2016-05-04
线性回归介绍之一 线性回归在所有的统计方法中绝对占有不可忽视的一席之地,其用途之广泛毋庸置疑,更重要的是它是整个回归家族中最为简单、也最容易理解的方法,几乎所有的统计学教材,不管是医学统计还是 ...

数据分析与统计推断: 线性回归

数据分析与统计推断:线性回归
2016-03-31
数据分析与统计推断:线性回归 相关性(correlation) 相关性描述了两个变量之间线性关联的强度,表示符号为R。 属性: 相关系数的幅度(绝对值)测量两个数字变量之间线性关联的强度 相关系数 ...

从一个R语言案例学 线性回归

从一个R语言案例学线性回归
2016-01-26
从一个R语言案例学线性回归 数据分析师用r语言做数据分析的时候会很多,也有很多数据分析师对于用r语言不是很了解,下面就谈论一下? 线性回归简介:如下图所示,如果把自变量(也叫independent variable ...
用R语言进行简单线性回归分析_数据分析师考试
2015-07-01
用R语言进行简单线性回归分析_数据分析师考试 用R语言进行简单线性回归分析,数据出自何晓群--应用回归分析,语言如下所示: x y 3.4 26.2 1.8 17.8 4.6 31.3 2.3 23.1 ...

【连载7】如何用spss做probit回归和非 线性回归

【连载7】如何用spss做probit回归和非线性回归
2014-12-02
Probit回归: Probit回归全称probability unit,翻译过来叫做概率单位法,蛮拗口的一个名字。这个回归主要用于研究半数效量用的。直白一点说,就是比方你拿一种药去药蟑螂,你想知道你用多少药能药死多少 ...
【连载4】 如何用spss做一般(含虚拟变量)多元线性回归
2014-11-28
【连载4】 如何用spss做一般(含虚拟变量)多元线性回归 回归一直是个很重要的主题。因为在数据分析的领域里边,模型重要的也是主要的作用包括两个方面,一是发现,一是预测。而很多时候我们就要通过回归来进 ...

【CDA干货】特征相对重要性:解锁模型鲁棒性与可解释性的双重密钥

【CDA干货】特征相对重要性:解锁模型鲁棒性与可解释性的双重密钥
2025-12-05
在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据,将难以通过合规审查;电商推荐模型若对异常点击数据敏感,会导致推荐效果剧烈波动。而 ...
CDA二级备考经验
2025-12-04
作者简介:姜天翼 数据分析从业者 我是一名统计学专业出身的数据分析师,在经过了3年的数据分析工作与踩坑后,我对数据分析这个职业和工作内容有了更深的理解,本次借着报考CDA二级的备考分享聊聊对数据分析师的一些 ...

【CDA干货】回归分析中调整后R方为负?本质、成因与应对策略

【CDA干货】回归分析中调整后R方为负?本质、成因与应对策略
2025-12-04
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通常在0到1之间。但在实际分析中,不少初学者会遇到“调整后R方为负值”的反常情况:明明 ...

【CDA干货】神经网络损失函数:没有“最佳值”,但有“最优解”

【CDA干货】神经网络损失函数:没有“最佳值”,但有“最优解”
2025-12-02
在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却在损失降至0.1还是0.01时陷入迷茫;资深开发者则明白,纠结“具体降到多少”本身就是 ...

【CDA干货】数据标准化后出现负值?别急!场景化解决全方案

【CDA干货】数据标准化后出现负值?别急!场景化解决全方案
2025-12-02
在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一尺度,为模型训练或业务分析扫清障碍。但很多数据从业者会陷入“负值恐慌”:Z-score ...

【CDA干货】分布的“性格”:正态与偏态如何左右统计分析

【CDA干货】分布的“性格”:正态与偏态如何左右统计分析
2025-11-27
在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的准确性、推断统计的可靠性以及模型预测的有效性。正态分布因“对称、稳定”的特质成为 ...

【CDA干货】大数据营销的“精准导航”:特征重要性分析的实战价值

【CDA干货】大数据营销的“精准导航”:特征重要性分析的实战价值
2025-11-24
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用户特征数据(如浏览行为、消费记录、社交互动等),究竟哪些才是驱动转化、留存的关键 ...

CDA 数据分析师:从数据分析基本概念到实战落地 —— 构建专业能力的核心框架

CDA 数据分析师:从数据分析基本概念到实战落地 —— 构建专业能力的核心框架
2025-11-12
在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” 的表层。事实上,数据分析是一套包含 “定义、目标、流程、方法” 的完整体系,而CDA( ...

【CDA干货】mtcars 数据集的实战

【CDA干货】mtcars 数据集的实战
2025-11-11
这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是:以 mtcars 数据集的 “每加仑里程(mpg)” 为因变量,“气缸数(cyl)、马力(hp) ...

【CDA干货】机器学习分类模型:从原理到实战的完整指南

【CDA干货】机器学习分类模型:从原理到实战的完整指南
2025-11-06
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 / 恶性)”,从 “客户流失预测(流失 / 留存)” 到 “图像分类(猫 / 狗 / 汽车)” ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

OK
客服在线
立即咨询