
数据分析师用r语言做数据分析的时候会很多,也有很多数据分析师对于用r语言不是很了解,下面就谈论一下?
线性回归简介:如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点。线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值。而我们要做的就是找出一条合适的曲线,也就是找出合适的斜率及纵截矩。
SSE & RMSE
上图中的SSE指sum of squared error,也即预测值与实际值之差的平方和,可由此判断该模型的误差。但使用SSE表征模型的误差有些弊端,比如它依赖于点的个数,且不好定其单位。所以我们有另外一个值去称量模型的误差。RMSE(Root-Mean-Square Error)。
由N将其标准化,并且其单位与变量单位相同。
案例
许多研究表明,全球平均气温在过去几十年中有所升高,以此引起的海平面上升和极端天气频现将会影响无数人。本文所讲案例就试图研究全球平均气温与一些其它因素的关系。
本例我们以1983年5月到2006年12月的数据作为训练数据集,以之后的数据作为测试数据集。
数据
首先加载数据
temp <- read.csv("climate_change.csv")
数据解释
Year 年份 M
Month 月份 T
emp 当前周期内的全球平均气温与一个参考值之差
CO2, N2O,CH4,CFC.11,CFC.12:这几个气体的大气浓度 Aerosols
模型选择
线性回归模型保留两部分。
"数据分析师'选择目标feature。我们数据中,有多个feature,但并非所有的feature都对预测有帮助,或者并非所有的feature都需要一起工作来做预测,因此我们需要筛选出最小的最能预测出接近事实的feature组合。
确定feature系数(coefficient)。feature选出来后,我们要确定每个feature对预测结果所占的权重,这个权重即为coefficient
结合实例选择模型
初始选择所有feature
选择所有feature作为第一个model1,并使用summary函数算出其Adjusted R2为0.7371。
model1 <- lm(Temp ~ MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols, temp) summary(model1)
逐一去掉feature
在model1中去掉任一个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6373 |
MEI + CH4 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7331 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.738 |
MEI + CO2 + CH4 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CH4 + N2O + CFC.12 + TSI + Aerosols |
0.7163 |
MEI + CO2 + CH4 + N2O + CFC.11 + TSI + Aerosols |
0.7172 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + Aerosols |
0.697 |
MEI + CO2 + CH4 + N2O + CFC.11 + CFC.12 + TSI |
0.6883 |
本轮得到Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
从model2中任意去掉1个feature,并记下相应的Adjusted R2如下
Feature |
Adjusted R2 |
CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.6377 |
MEI + N2O + CFC.11 + CFC.12 + TSI + Aerosols |
0.7339 |
MEI + CO2 + CFC.11 + CFC.12 + TSI + Aerosols |
0.7346 |
MEI + CO2 + N2O + CFC.12 + TSI + Aerosols |
0.7171 |
MEI + CO2 + N2O + CFC.11 + TSI + Aerosols |
0.7166 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + Aerosols |
0.698 |
MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI |
0.6891 |
任一组合的Adjusted R2都比上一轮小,因此选择上一轮的feature组合作为最终的模型,也即Temp ~ MEI + CO2 + N2O + CFC.11 + CFC.12 + TSI + Aerosols
由summary(model2)可算出每个feature的coefficient如下 。
线性回归介绍
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
上面这段定义来自于维基百科。
这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2m是为了在求导的时候,这个系数就不见了。至于为何选择平方和作为错误估计函数,就得从概率分布的角度来解释了。
如何调整θ以使得J(θ)取得最小值有很多方法,本文会重点介绍梯度下降法和正规方程法。
梯度下降
在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要使得J(θ)最小。因此问题归结为求极小值问题。
梯度下降法流程如下:
1. 首先对θ赋值,这个值可以是随机的,也可以让θ为一个全零向量。
2. 改变θ的值,使得J(θ)按梯度下降的方向进行调整。
梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。更新公式为为:
这种方法需要对全部的训练数据求得误差后再对θ进行更新。(α为学习速度)
正规方程(Normal Equation)数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29