
SPSS分析技术:非线性回归;科学种田!肥料应该用多少合适
非线性回归
非线性关系可以分为本质是线性关系的非线性关系和完全非线性关系,有点拗口。在曲线回归总已经介绍,可以通过变量装换,转化为线性关系,并进行线性回归分析的就是本质是线性关系的非线性关系。如果无法通过变量装换,转化为线性关系,无法进行线性回归分析的叫完全非线性关系。今天我们介绍的非线性关系就是完全非线性关系的回归分析。
非线性回归的优势
曲线估计只能用于一个自变量和因变量相关关系的模型的分析,而非线性回归分析可以用来探讨因变量和一组自变量之间的非线性相关模型。非线性回归可以估计因变量和自变量之间任意关系的模型,可以根据自身需要随意设定估计方程的具体形式。因此,非线性回归在实际应用中价值更大,应用范围更广。
非线性回归模型
范例分析
某省农科院新培育了一种高产量农作物,并在海南的试验田中进行实验种植,现有试验田施肥量及其对应的农作物产量数据,根据该数据文件推定施肥量与产量之间的关系。
分析步骤
1、做散点图,观察施肥量与农作物产量的关系;选择菜单【图形】-【旧对话框】-【散点/点状】,将施肥量选为自变量,产量选为因变量。
2、 估计初始值;根据上图,施肥量和产量之间似乎存在线性关系。但是根据实际经验可知,这种推断不正确。因为作物产量不可能随着施肥量的增加而一直增加下去,当产量达到一定水平时,施肥量的增加不会带来产量的进一步提高,二者的关系可以用渐进回归模型:
要确定回归方程,首要估算出参数b1、b2、b3的初始值。由散点图看出,产量最大值接近13,不妨设b1=13;x=0时,y=6,故b2=6-13=-7;b3为散点图中两个分隔较宽的点之间的连线的斜率的倒数,在此取b3=-1.5。
3、参数设置;选择【分析】-【回归】-【非线性】菜单,打开非线性回归对话框。按照下图输入数据。
4、损失函数设置;单击“损失”,设置损失函数。所谓损失函数是指一个包括当前工作文件中的变量以及所设定的参数并通过计算法使之最小化的函数。系统默认状态下,非线性回归过程根据算法将残差平方和最小化为损失函数。如果选择“用户定义的损失函数”,可以再“用户定义的损失函数”列表框中键入或者粘贴一个表达式。字符串常数必须包含在引号或撇号中,数字常数必须按以美式格式键入,并用句点作为小数分隔符。本案例选择系统默认设置。单击“继续”。
5、 参数约束设置;单击“约束,定义参数约束。“约束”是在对解的迭代搜索过程中对参数所允许值的限制。该对话框有两个设置选项:“未约束”和“定义参数约束”。
6、 保存设置;单击“保存”,该对话框提供4种用于保存的数据类型,允许作为新变量的观测值保存于当前文件中。
7、算法选项设置;单击“选项”,该对话框用于设置参数估计的算法和算法的迭代次数、迭代步长和收敛条件等。
结果解释
1、 如上图所示,该案例经过多大20步的迭代估计之后,找到模型的最优解,即 b1、b2、b3的参数估计值13.348、-10.783和-0.418,此外还得到了三个参数值的标准误差和95%置信区间,以及三个参数估计值的相关系数,可以看出各个参数值之间的相关性很高,尤其是b1和b3的相关系数达到0.968,属非常显著的相关关系。
2、 根据上表回归模型的方差分析结果,表中回归行的平方和代表该回归模型所能解释的模型的方差变化,而残差行的平方和代表该非线性回归模型所不能解释的方差变化。二者的和即为未修正的总计,它是总的残差平方和,而R2=1-(残差平方和)/(已更正的平方和)=0.907,说明该模型能解释因变量90.7%的变异量,即该非线性模型的拟合优度很高。根据以上分析可以确定,该分析所获得的回归模型显著。
根据线性回归模型:
可得回归方程:
从散点图可以知道,目前采集到的数据还不足够,因为图中没有出现明显的平缓趋势。为了找到最合适的施肥量,可以通过得到的回归方程,做出自变量(施肥量)范围更广的曲线,找出曲线的平缓位置,这个位置对应的横轴值就是合理的施肥量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28