
线性回归在所有的统计方法中绝对占有不可忽视的一席之地,其用途之广泛毋庸置疑,更重要的是它是整个回归家族中最为简单、也最容易理解的方法,几乎所有的统计学教材,不管是医学统计还是社会统计抑或经济统计,线性回归绝对会有独立的章节,而其他的回归方法则很少有这种待遇。
线性回归大致可分为单因素回归和多因素回归,这里的“单”和“多”是针对自变量的(也叫原因变量),例如肥胖会对高血压有影响,这里的肥胖就是自变量。吸烟会引发肺癌,这里的吸烟就是自变量。自变量是可以控制的。与自变量相对应的就是因变量(也叫结果变量)。其实仅从它们的名字就能看出其含义:原因引起结果,原因就是自变量,是可以控制的;结果就是因变量,是受自变量变化的影响的,可以通过自变量的改变而改变。
单因素的线性回归,就是说只有一个因变量和一个自变量的情形,这是最简单的线性回归模型。这里先介绍这种最简单的线性回归。
线性回归主要可以用来做什么呢?一个最主要的目的就是寻找某一现象发生的原因。比如,这几年我国的肺癌发生率一直在上升,是什么原因引起的呢?简单来说,如果我们目前只想考虑一个因素,比如烟草的销量。那我们就可以粗略的看一下烟草的销量是不是与肺癌的发生率呈线性关系。 假定如下图所示(虚拟的数据),随着烟草销量的增加,肺癌发生率也增加,表明二者具有线性关系。
线性回归的另一个用途可以用来预测。如果发现了烟草的销量和肺癌发生率有关,那可以通过控制烟草的销量预测肺癌的发生情况。比如,如果减少了烟草销量,可以预期肺癌的发生将会减少。或者说,如果销量到了某一数值,预期肺癌的发生率将对达到多少。但是,预测的前提的其他条件保持不变。比如大气污染等环境因素保持不变,否则就会受这些变化的因素的影响,预测的准确性也就谈不上了。
总之,如果你发现了一种现象,又想探索这种现象背后的原因,就可以考虑采用回归分析。如果这种现象可以用连续型数值来描述的话,可以考虑采用线性回归。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11