
相关性描述了两个变量之间线性关联的强度,表示符号为R。
属性:
方案1:最小化残差的幅度和
方案2:最小化残差平方和。更常使用,易于计算,残差增幅更大。
使用线性模型对解释变量给定值预测响应变量值称之为预测(prediction)。
使用模型估计原有数据域外的值称之为外推法(extrapolation)。优势预测可能是外推法。
解释变量和响应变量值间的关系必须是线性的;
存在匹配非线性关系模型的方法;
使用数据散点图scatterplot或残差图residuals plot检查
残差必须近似正态分布,中心点为0;
如果有异常观察值不遵循正常数据的趋势,有可能不满足该条件
使用残差的直方图或正态概率图检查
点围绕最小平方和线(the least squares line)的可变性应该大概恒定,暗指残差围绕0的可变性应该大概恒定,这也称为同方差性(homoscedasticity)。
使用残差图residuals plot检查
评估线性模型拟合度更常使用,通过相关系数平方计算而得;
可以获知线性模型解释响应变量可变性的百分比,剩余可变性无法由模型解释;
介于0和1之间。
由于我们经常检查解释变量和响应变量之间是否存在关系,对斜率虚假设值经常为0;很少对截距进行推断。
对线性回归的每个估计参数都会损失一个自由度。
我们必须了解所工作的数据:随机样本、非随机样本或总体。如果已有总体数据,假设推断及其p-value结果就毫无意义。如果样本是非随机(有偏)的,结果将不可信。
t检验是评估x和y线性关系斜率假设检验的证据力度的一种方式。将y可变性分解为可解释和无法解释的可变性,需要使用方差分析ANOVA。
R sqared是模型可以解释y可变性的比例。很大,即x和y之间存在线性关系;小,则x和y之间存在线性关系的证据不令人信服。
两种结算方式:相关性,相关系数平方;定义,总可变性中可解释可变性的比例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10