cda

数字化人才认证

首页 > 行业图谱 >

对业务和用户的理解,是数据挖掘“皇冠上的明珠”

对业务和用户的理解,是数据挖掘“皇冠上的明珠”
2016-09-06
对业务和用户的理解,是数据挖掘“皇冠上的明珠” 这篇文章不是数据挖掘教程,而是让用研、产品、运营及其它相关岗位的同学了解: 数据挖掘的特点; 数据挖掘可以做哪些事情、有什么应用价值; 要发挥 ...

数据挖掘是对业务和用户的理解

数据挖掘是对业务和用户的理解
2016-09-02
数据挖掘是对业务和用户的理解 数据挖掘有很高的专业门槛;然而用研、产品、运营们也不一定就会被数据科学家们“碾压”了。这篇文章不是数据挖掘教程,而是让用研、产品、运营及其它相关岗位的同学了解: 数 ...

数据挖掘系列决策树分类算法

数据挖掘系列决策树分类算法
2016-08-15
数据挖掘系列决策树分类算法 从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。 这篇先介绍 ...

基于树的建模-完整教程(R & Python)

基于树的建模-完整教程(R & Python)
2016-05-06
基于树的建模-完整教程(R & Python) 基于树的学习算法被认为是最好的方法之一,主要用于监测学习方法。基于树的方法支持具有高精度、高稳定性和易用性解释的预测模型。不同于线性模型,它们映射非线性关 ...

机器学习算法需要注意的一些问题

机器学习算法需要注意的一些问题
2016-05-05
机器学习算法需要注意的一些问题 对于机器学习的实际运用,光停留在知道了解的层面还不够,我们需要对实际中容易遇到的一些问题进行深入的挖掘理解。我打算将一些琐碎的知识点做一个整理。 1 数据不平衡问 ...

随机森林(RF, RandomForest)介绍

随机森林(RF, RandomForest)介绍
2016-05-04
随机森林(RF, RandomForest)介绍 随机森林(RF, RandomForest)包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。通过自助法(boot-strap)重采样技术,不断生成训练样本和测试样本 ...
机器学习中的随机森林模型
2016-04-21
机器学习中的随机森林模型 01 树与森林 在构建决策树的时候,可以让树进行完全生长,也可以通过参数控制树的深度或者叶子节点的数量,通常完全生长的树会带来过拟合问题。过拟合一般由数据中的噪声和离群点 ...

机器学习—海量数据挖掘解决方案

机器学习—海量数据挖掘解决方案
2016-04-12
机器学习—海量数据挖掘解决方案 大数据时代里,互联网用户每天都会直接或间接使用到大数据技术的成果,直接面向用户的比如搜索引擎的排序结果,间接影响用户的比如网络游戏的流失用户预测、支付平台的欺 ...

大数据挖掘技术之DM经典模型(下)

大数据挖掘技术之DM经典模型(下)
2016-04-07
大数据挖掘技术之DM经典模型(下) 接着上篇大数据挖掘技术之DM经典模型(上)文章,接下来我们将探讨朴素贝叶斯模型、线性回归、多元回归、逻辑回归分析等模型。 4、朴素贝叶斯模型 表查询模型简单有效 ...

R语言与机器学习(分类算法)支持向量机

R语言与机器学习(分类算法)支持向量机
2016-03-26
R语言与机器学习(分类算法)支持向量机 说到支持向量机,必须要提到july大神的《支持向量机通俗导论》,个人感觉再怎么写也不可能写得比他更好的了。这也正如青莲居士见到崔颢的黄鹤楼后也只能叹“此处有景道 ...
实现大数据,从小样本中筛选海量样本
2016-01-21
实现大数据,从小样本中筛选海量样本 从小样本到大数据:概念与误区 最近两年产生并记录的数据,总量占到人类文明以来所有数据总和的90%。我们源源不断记录着一切有价值的信息,世界和万物的变化数据变成一 ...

大数据精准营销中的个性化推荐与应用

大数据精准营销中的个性化推荐与应用
2015-12-24
大数据精准营销中的个性化推荐与应用 亚马逊通过个性化推荐所获取的交易额占总交易额的20%;双十一期间,天猫和淘宝通过对数据的挖掘,使用了“千人千面”的个性化推荐;阿里CEO张勇在之后的媒体沟通会上肯 ...

欠拟合产生的原因有哪些?应该如何解决?

欠拟合产生的原因有哪些?应该如何解决?
2020-07-23
对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合 ...

正则化---提高深度学习模型的泛化能力

正则化---提高深度学习模型的泛化能力
2020-07-23
前面文章小编简单给大家介绍了泛化能力的一些基础知识,今天给大家带来的是提高模型泛化能力的方法--正则化。 一、首先来回顾一下什么是泛化能力 泛化能力(generalization ability),百科给出的定义是:机器 ...

机器学习中的偏差和方差是什么?有哪些区别?

机器学习中的偏差和方差是什么?有哪些区别?
2020-07-20
偏差与方差是我们在机器学习中经常遇到的两个概念,而且在有关机器学习的面试中,偏差与方差也经常拿来考验面试者的机器学习的基础知识。偏差与方差这两者看似简单,但要真正弄清楚两者之间的联系与区别,必须要下 ...

决策树剪枝,常用这2种方法

决策树剪枝,常用这2种方法
2020-07-09
前面我们了解了决策树的概念,现在来了解一下决策树剪枝。可能会有人问:为什么要剪枝?答案是:如果一棵决策树完全生长,那么这棵决策树所对应的每一个叶节点中只会包含一个样本,就很有可能面临过拟合问题,因此 ...
XGBoost算法的这3类参数,你知道吗?
2020-07-09
XGBoost是诞生于2014年2月的一种专攻梯度提升算法的机器学习函数库,它有很好的学习效果,速度也非常快,与梯度提升算法在另一个常用机器学习库scikit-learn中的实现相比,XGBoost的性能可以提升10倍以上。还有,X ...

随机森林(Random Forest)算法的优点和缺点都有哪些?

随机森林(Random Forest)算法的优点和缺点都有哪些?
2022-12-23
随机森林(Random Forests)现在机器学习中比较火的一个算法,是一种基于Bagging的集成学习方法,能够很好地处理分类和回归的问题。下面小编整理了随机森林的优点和缺点,希望对大家有所帮助。 随机森林有许多优 ...

3种常见集成算法模型的详细理解

3种常见集成算法模型的详细理解
2020-07-08
集成算法(Emseble Learning)是构建多个学习器,然后通过一定策略将这些学习器组合起来,让它们来完成学习任务的,通常可以获得比单一学习显著优越的学习器。 常见的集成算法模型有:Bagging、Boosting、Stack ...

对于KNN算法概念以及原理的简单理解

对于KNN算法概念以及原理的简单理解
2020-07-09
KNN的全称是K-Nearest Neighbors,具体意思为K个最近的邻居。KNN算法可以说是机器学习算法中最简单、最基础的算法了。既能用于分类,也能用于回归。是通过测量不同特征值之间的距离来进行分类。 KNN的基本思路 ...

OK
客服在线
立即咨询