京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas信用评分之不用检查异常值的最优分组
今天的更新比以往晚了一天,假期综合症第一天,我到现在已经喝了第三杯咖啡,实现上周的预告,这种更新一个不用检查异常值的数值变量最优分组。其实这代码我本来不想拿出来,我觉得这代码估计能卖点钱,但是介于我是一个不敢赚你们钱的博主,所以还是拿出来吧。本篇文章最后有惊喜。
首先我们先说下,这的代码的思路,为什么不用检查异常值呢。其实是这样子的,我把等量分组和最优分组结合起来了,即保证了最小组的数量也保证了不要因为某些异常值导致分组的过拟合。也少去人工的手动分组。
譬如,有一个年龄的分组,那么我会先用等量分组先分成20组,这时候注意了,就是前后会有极小极大值,就算是异常值,这时候因为你分成了20组,所以极小值以及极大值就被包含在第一组以及最后一组中,以1和20代替了。我相信我这么说你应该可以理解。
至于这等量分组的代码用的是proc rank过程去分的,具体可以参考:proc rank过程
等量分组的代码在这篇文章中:sas信用评分之手动对数值变量分组
然后将产出的结果映射到原数据中再丢进去最优分组,最优分组的代码在这篇文章中:sas信用评分之第二步变量筛选。再丢进去最优分组的代码的时候,需要将等量分组映射到原数据集中,映射代码如下:
/*这个宏是在%data_split后面的执行的,所以这里需要的数据集有%data_split中产生的以"_iv"为后缀的,"_RANK"的数据集*/
data:填入原数据集
id:填入主键
ddvar:因变量
%macro map(data,id,ddvar);
proc sql noprint;
select col_name into: varlist separated by ' ' from &data._IV;
%let nVar=&SQLOBS;
quit;/*从细分后的字典表中得到待填充的变量*/
%put &varlist.;
data &data._woe;
set &data.(keep=&id. &ddvar.);
run;/*首先获取相应的识别标识及Y值*/
data &data._1(drop=i);
set &data.;
array arr1{*} _NUMERIC_;
do i = 1 to dim(arr1);
if missing(arr1(i)) then do;
arr1(i)=-999;
end;
end;
run;
%do i=1 %to &nVar;
%let var = %scan(&varlist, &i);
data V ;
set &data._1(keep=&id. &var.);
run;/*找出待填充变量的取值,将空值填充为1000000000*/
data rank;
set &data._RANK;
where col_name="&var.";
run;/*找出待填充变量的配置表相关信息*/
proc sql noprint;
create table WOE AS
select I.&id., B.clus as &var.
from V AS I
left join rank AS B
ON I.&var. > b.low AND I.&var. <= B.up
;
quit;/*通过上、下界进行填充*/
proc sort data=WOE;
by &id.;
run;
proc sort data=&data._woe;
by &id.;
run;
data &data._woe;
merge &data._woe woe;
by &id.;
run;/*合并所有的变量woe*/
%end;
%mend;
我希望你们真心想用这部分代码分组的,你们要自己看懂代码,学习这种东西不是问出来,都是要自己动手琢磨的。我自认为我不是一个聪明的人,但我是喜欢的东西,我会很乐于去探索,所以你也可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27