京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-选择“最佳”的回归模型
尝试获取一个回归方程时,实际上你就面对着从众多可能的模型中做选择的问题。是不是所有的变量都要包括?抑或去掉那个对预测贡献不显著的变量?还是需要添加多项式项和/或交互项来提高拟合度?最终回归模型的选择总是会涉及预测精度(模型尽可能地拟合数据)与模型简洁度(一个简单且能复制的模型)的调和问题。如果有两个几乎相同预测精度的模型,你肯定喜欢简单的那个。本节讨论的问题,就是如何在候选模型中进行筛选。注意,“最佳”是打了引号的,因为没有做评价的唯一标准,最终的决定需要调查者的评判。
8.6.1 模型比较
用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度。所谓嵌套模型,即它的一些项完全包含在另一个模型中。在states的多元回归模型中,我们发现Income和Frost的回归系数不显著,此时你可以检验不含这两个变量的模型与包含这两项的模型预测效果是否一样好(见代码清单8-11)。
此处,模型1嵌套在模型2中。 anova()函数同时还对是否应该添加Income和Frost到线性模型中进行了检验。由于检验不显著(p=0.994),因此我们可以得出结论:不需要将这两个变量添加到线性模型中,可以将它们从模型中删除。
AIC(Akaike
Information Criterion,赤池信息准则)也可以用来比较模型,它考虑了模型的统计拟合度以及用来拟合的参数数目。
AIC值越小的模型要优先选择,它说明模型用较少的参数获得了足够的拟合度。该准则可用AIC()函数实现(见代码清单8-12)。
此处AIC值表明没有Income和Frost的模型更佳。注意, ANOVA需要嵌套模型,而AIC方法不需要。比较两模型相对来说更为直接,但如果有4个、 10个,或者100个可能的模型怎么办呢?这便是下节的主题。
8.6.2 变量选择
从大量候选变量中选择最终的预测变量有以下两种流行的方法:逐步回归法(stepwise method)和全子集回归(all-subsets regression)。
1. 逐步回归
逐步回归中,模型会一次添加或者删除一个变量,直到达到某个判停准则为止。例如,
向前逐步回归(forward stepwise)每次添加一个预测变量到模型中,直到添加变量不会使模型有所改进为止。
向后逐步回归(backward
stepwise)从模型包含所有预测变量开始,一次删除一个变量直到会降低模型质量为止。而向前向后逐步回归(stepwise
stepwise,通常称作逐步回归,以避免听起来太冗长),结合了向前逐步回归和向后逐步回归的方法,变量每次进入一个,但是每一步中,变量都会被重新评价,对模型没有贡献的变量将会被删除,预测变量可能会被添加、删除好几次,直到获得最优模型为止。
逐步回归法的实现依据增删变量的准则不同而不同。 MASS包中的stepAIC()函数可以实现逐步回归模型(向前、向后和向前向后),依据的是精确AIC准则。代码清单8-13中,我们应用的是向后回归。
开始时模型包含4个(全部)预测变量,然后每一步中,
AIC列提供了删除一个行中变量后模型的AIC值, <none>中的AIC值表示没有变量被删除时模型的AIC。第一步,
Frost被删除, AIC从97.75降低到95.75;第二步, Income被删除,
AIC继续下降,成为93.76,然后再删除变量将会增加AIC,因此终止选择过程。
逐步回归法其实存在争议,虽然它可能会找到一个好的模型,但是不能保证模型就是最佳模型,因为不是每一个可能的模型都被评价了。为克服这个限制,便有了全子集回归法。
2. 全子集回归
全子集回归,顾名思义,即所有可能的模型都会被检验。分析员可以选择展示所有可能的结果,也可以展示n 个不同子集大小(一个、两个或多个预测变量)的最佳模型。 例如, 若nbest=2,先展示两个最佳的单预测变量模型,然后展示两个最佳的双预测变量模型,以此类推,直到包含所有的预测变量。全子集回归可用leaps包中的regsubsets()函数实现。你能通过R平方、调整R平方或Mallows Cp统计量等准则来选择“最佳”模型。
R平方含义是预测变量解释响应变量的程度;调整R平方与之类似,但考虑了模型的参数数目。
R平方总会随着变量数目的增加而增加。当与样本量相比,预测变量数目很大时,容易导致过拟合。R平方很可能会丢失数据的偶然变异信息,而调整R平方则提供了更为真实的R平方估计。另外,
Mallows Cp统计量也用来作为逐步回归的判停规则。广泛研究表明,对于一个好的模型,它的Cp统计量非常接近于模型的参数数目(包括截距项)。
在代码清单8-14中,我们对states数据进行了全子集回归。结果可用leaps包中的plot()函数绘制(如图8-17所示),或者用car包中的subsets()函数绘制(如图8-18所示)。
初看图8-17可能比较费解。第一行中(图底部开始),可以看到含intercept(截距项)和Income的模型调整R平方为0.33,含intercept和Population的模型调整R平方为0.1。跳至第12行,你会看到含intercept、
Population、 Illiteracy和Income的模型调整R平方值为0.54,而仅含intercept、
Population和Illiteracy的模型调整R平方为0.55。此处,你会发现含预测变量越少的模型调整R平方越大(对于非调整的R平方,这是不可能的)。图形表明,双预测变量模型(Population和Illiteracy)是最佳模型。
在图8-18中,你会看到对于不同子集大小,基于Mallows
Cp统计量的四个最佳模型。越好的模型离截距项和斜率均为1的直线越近。图形表明,你可以选择这几个模型,其余可能的模型都可以不予考虑:含Population和Illiteracy的双变量模型;含Population、
Illiteracy和Frost的三变量模型,或Population、
Illiteracy和Income的三变量模型(它们在图形上重叠了,不易分辨) ;含Population、 Illiteracy、
Income和Frost的四变量模型。
大部分情况中,全子集回归要优于逐步回归,因为考虑了更多模型。但是,当有大量预测变量时,全子集回归会很慢。一般来说,变量自动选择应该被看做是对模型选择的一种辅助方法,而不是直接方法。拟合效果佳而没有意义的模型对你毫无帮助,主题背景知识的理解才能最终指引你获得理想的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12