
机器学习中的kNN算法及Matlab实例
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
尽管kNN算法的思想比较简单,但它仍然是一种非常重要的机器学习(或数据挖掘)算法。在2006年12月召开的 IEEE
International Conference on Data Mining (ICDM),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参加文献【1】, K最近邻算法即位列其中。
二、在Matlab中利用kNN进行最近邻查询
如果手头有一些数据点(以及它们的特征向量)构成的数据集,对于一个查询点,我们该如何高效地从数据集中找到它的最近邻呢?最通常的方法是基于k-d-tree进行最近邻搜索。
KNN算法不仅可以用于分类,还可以用于回归,但主要应用于回归,所以下面我们就演示在MATLAB中利用KNN算法进行数据挖掘的基本方法。
首先在Matlab中载入数据,代码如下,其中meas( : , 3:4)相当于取出(之前文章中的)Petal.Length和Petal.Width这两列数据,一共150行,三类鸢尾花每类各50行。
[plain] view plain copy
load fisheriris
x = meas(:,3:4);
然后我们可以借助下面的代码来用图形化的方式展示一下数据的分布情况:
[plain] view plain copy
gscatter(x(:,1),x(:,2),species)
legend('Location','best')
执行上述代码,结果如下图所示:
然后我们在引入一个新的查询点,并在图上把该点用×标识出来:
[plain] view plain copy
newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...
'markersize',10,'linewidth',2)
结果如下图所示:
接下来建立一个基于KD-Tree的最近邻搜索模型,查询目标点附近的10个最近邻居,并在图中用圆圈标识出来。
[plain] view plain copy
>> Mdl = KDTreeSearcher(x)
Mdl =
KDTreeSearcher with properties:
BucketSize: 50
Distance: 'euclidean'
DistParameter: []
X: [150x2 double]
>> [n,d] = knnsearch(Mdl,newpoint,'k',10);
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
下图显示确实找出了查询点周围的若干最近邻居,但是好像只要8个,
不用着急,其实系统确实找到了10个最近邻居,但是其中有两对数据点完全重合,所以在图上你只能看到8个,不妨把所有数据都输出来看看,如下所示,可知确实是10个。
[plain] view plain copy
>> x(n,:)
ans =
5.0000 1.5000
4.9000 1.5000
4.9000 1.5000
5.1000 1.5000
5.1000 1.6000
4.8000 1.4000
5.0000 1.7000
4.7000 1.4000
4.7000 1.4000
4.7000 1.5000
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。例如下面的代码告诉我们,待查询点的邻接中有80%是versicolor类型的鸢尾花,所以如果采用KNN来进行分类,那么待查询点的预测分类结果就应该是versicolor类型。
[plain] view plain copy
>> tabulate(species(n))
Value Count Percent
virginica 2 20.00%
versicolor 8 80.00%
在利用 KNN方法进行类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
我们还要说明在Matlab中使用KDTreeSearcher进行最近邻搜索时,距离度量的类型可以是欧拉距离('euclidean')、曼哈顿距离('cityblock')、闵可夫斯基距离('minkowski')、切比雪夫距离('chebychev'),缺省情况下系统使用欧拉距离。你甚至还可以自定义距离函数,然后使用knnsearch()函数来进行最近邻搜索,具体可以查看MATLAB的帮助文档,我们不具体展开。
三、利用kNN进行数据挖掘的实例
下面我们来演示在MATLAB构建kNN分类器,并以此为基础进行数据挖掘的具体步骤。首先还是载入鸢尾花数据,不同的是这次我们使用全部四个特征来训练模型。
[plain] view plain copy
load fisheriris
X = meas; % Use all data for fitting
Y = species; % Response data
然后使用fitcknn()函数来训练分类器模型。
[plain] view plain copy
>> Mdl = fitcknn(X,Y)
Mdl =
ClassificationKNN
ResponseName: 'Y'
CategoricalPredictors: []
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NumObservations: 150
Distance: 'euclidean'
NumNeighbors: 1
你可以看到默认情况下,最近邻的数量为1,下面我们把它调整为4。
[plain] view plain copy
Mdl.NumNeighbors = 4;
或者你可以使用下面的代码来完成上面同样的任务:
[plain] view plain copy
Mdl = fitcknn(X,Y,'NumNeighbors',4);
既然有了模型,我们能否利用它来执行以下预测分类呢,具体来说此时我们需要使用predict()函数,例如
[plain] view plain copy
>> flwr = [5.0 3.0 5.0 1.45];
>> flwrClass = predict(Mdl,flwr)
flwrClass =
'versicolor'
最后,我们还可以来评估一下建立的kNN分类模型的情况。例如你可以从已经建好的模型中建立一个cross-validated 分类器:
[plain] view plain copy
CVMdl = crossval(Mdl);
然后再来看看cross-validation loss,它给出了在对那些没有用来训练的数据进行预测时每一个交叉检验模型的平均损失
[plain] view plain copy
>> kloss = kfoldLoss(CVMdl)
kloss =
0.0333
再来检验一下resubstitution loss, which,默认情况下,它给出的是模型Mdl预测结果中被错误分类的数据占比。
[plain] view plain copy
>> rloss = resubLoss(Mdl)
rloss =
0.0400
如你所见,cross-validated 分类准确度与 resubstitution 准确度大致相近。所以你可以认为你的模型在面对新数据时(假设新数据同训练数据具有相同分布的话),分类错误的可能性大约是 4% 。
四、关于k值的选择
kNN算法在分类时的主要不足在于,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。因此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
从另外一个角度来说,算法中k值的选择对模型本身及其对数据分类的判定结果都会产生重要影响。如果选择较小的k值,就相当于用较小的领域中的训练实例来进行预测,学习的近似误差会减小,只有与输入实例较为接近(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差会增大。预测结果会对近邻的实例点非常敏感。如果临近的实例点恰巧是噪声,预测就会出现错误。换言之,k值的减小意味着整体模型变得复杂,容易发成过拟合。数据分析师培训
如果选择较大的k值,就相当于用较大的邻域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。k值的增大就意味着整体的模型变得简单。
在应用中,k值一般推荐取一个相对比较小的数值。并可以通过交叉验证法来帮助选取最优k值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04