京公网安备 11010802034615号
经营许可证编号:京B2-20210330
异常值检测一般要求新发现的数据是否与现有观测数据具有相同的分布或者不同的分布,相同的分布可以称之为内点(inlier),具有不同分布的点可以称之为离群值。离群点和新奇点检测是不同的,有一个重要的区分必须掌握:
离群点检测:训练数据包含离群点,这些离群点被定义为远离其它内点的观察值。因此,离群点检测估计器会尝试拟合出训练数据中内围点聚集的区域, 而忽略异常值观察。
新奇点检测:训练数据没有受到离群点污染,我们感兴趣的是检测一个新的观测值是否为离群点。在这种情况下,离群点被认为是新奇点。
离群点检测和新奇点检测都用于异常检测, 其中一项感兴趣的是检测异常或异常观察。离群点检测又被称之为无监督异常检测,新奇点检测又被称之为半监督异常检测。 在离群点检测的背景下, 离群点/异常点不能够形成密集的簇,因为可用的估计器假设离群点/异常点位于低密度区域。相反的,在新奇点检测的背景下, 新奇点/异常点只要位于训练数据的低密度区域,是可以形成稠密聚类簇的,在此背景下被认为是正常的。
scikit-learn有一套机器学习工具estimator.fit(X_train),可用于新奇点或离群值检测。然后可以使用estimator.predict(X_test)方法将新观察值分类为离群点或内点 :内围点会被标记为1,而离群点标记为-1。
离群点检测方法总结
下面的例子展示了二维数据集上不同异常检测算法的特点。数据集包含一种或两种模式(高密度区域),以说明算法处理多模式数据的能力。
对于每个数据集,产生15%的样本作为随机均匀噪声。这个比例是给予OneClassSVM的nu参数和其他离群点检测算法的污染参数的值。由于局部离群因子(LOF)用于离群值检测时没有对新数据应用的预测方法,因此除了局部离群值因子(LOF)外,inliers和离群值之间的决策边界以黑色显示。
sklearn.svm。一个已知的eclasssvm对异常值很敏感,因此在异常值检测方面表现不太好。该估计器最适合在训练集没有异常值的情况下进行新颖性检测。也就是说,在高维的离群点检测,或者在不对嵌入数据的分布做任何假设的情况下,一个类支持向量机可能在这些情况下给出有用的结果,这取决于它的超参数的值。
sklearn.covariance。椭圆包络假设数据是高斯分布,并学习一个椭圆。因此,当数据不是单峰时,它就会退化。但是请注意,这个估计器对异常值是稳健的。
sklearn.ensemble。IsolationForest sklearn.neighbors。LocalOutlierFactor对于多模态数据集似乎表现得相当好。sklearn的优势。第三个数据集的局部离群因子超过其他估计显示,其中两种模式有不同的密度。这种优势是由LOF的局域性来解释的,即它只比较一个样本的异常分数与其相邻样本的异常分数。
最后,对于最后一个数据集,很难说一个样本比另一个样本更反常,因为它们是均匀分布在超立方体中。除了sklearn。svm。有一点过度拟合的支持向量机,所有的估计器都对这种情况给出了合适的解决方案。在这种情况下,明智的做法是更密切地观察样本的异常分数,因为一个好的估计器应该给所有样本分配相似的分数。
虽然这些例子给出了一些关于算法的直觉,但这种直觉可能不适用于非常高维的数据。
最后,请注意,模型的参数在这里是精心挑选的,但在实践中需要进行调整。在没有标记数据的情况下,这个问题是完全无监督的,因此模型的选择是一个挑战。
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Albert Thomas <albert.thomas@telecom-paristech.fr> # License: BSD 3 clause import time import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_moons, make_blobs from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor print(__doc__) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' # Example settings n_samples = 300 outliers_fraction = 0.15 n_outliers = int(outliers_fraction * n_samples) n_inliers = n_samples - n_outliers # define outlier/anomaly detection methods to be compared anomaly_algorithms = [ ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)), ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)), ("Isolation Forest", IsolationForest(contamination=outliers_fraction, random_state=42)), ("Local Outlier Factor", LocalOutlierFactor( n_neighbors=35, contamination=outliers_fraction))] # Define datasets blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2) datasets = [ make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0], make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3], **blobs_params)[0], 4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] - np.array([0.5, 0.25])), 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)] # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150)) plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 rng = np.random.RandomState(42) for i_dataset, X in enumerate(datasets): # Add outliers X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0) for name, algorithm in anomaly_algorithms: t0 = time.time() algorithm.fit(X) t1 = time.time() plt.subplot(len(datasets), len(anomaly_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) # fit the data and tag outliers if name == "Local Outlier Factor": y_pred = algorithm.fit_predict(X) else: y_pred = algorithm.fit(X).predict(X) # plot the levels lines and the points if name != "Local Outlier Factor": # LOF does not implement predict Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black') colors = np.array(['#377eb8', '#ff7f00']) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2]) plt.xlim(-7, 7) plt.ylim(-7, 7) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27